論文の概要: Therapy as an NLP Task: Psychologists' Comparison of LLMs and Human Peers in CBT
- arxiv url: http://arxiv.org/abs/2409.02244v2
- Date: Wed, 25 Jun 2025 02:07:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-26 21:00:42.435395
- Title: Therapy as an NLP Task: Psychologists' Comparison of LLMs and Human Peers in CBT
- Title(参考訳): NLP課題としてのセラピー : 心理学者によるCBTにおけるLLMと人間ピアの比較
- Authors: Zainab Iftikhar, Sean Ransom, Amy Xiao, Nicole Nugent, Jeff Huang,
- Abstract要約: 大規模言語モデル(LLM)はアドホックセラピストとして使われている。
本研究は,ヒトカウンセラーのセッションレベルの行動と,同僚のチームが単一セッション認知行動療法を行うように促したLDMの行動とを比較した。
- 参考スコア(独自算出の注目度): 6.932239020477335
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) are being used as ad-hoc therapists. Research suggests that LLMs outperform human counselors when generating a single, isolated empathetic response; however, their session-level behavior remains understudied. In this study, we compare the session-level behaviors of human counselors with those of an LLM prompted by a team of peer counselors to deliver single-session Cognitive Behavioral Therapy (CBT). Our three-stage, mixed-methods study involved: a) a year-long ethnography of a text-based support platform where seven counselors iteratively refined CBT prompts through self-counseling and weekly focus groups; b) the manual simulation of human counselor sessions with a CBT-prompted LLM, given the full patient dialogue and contextual notes; and c) session evaluations of both human and LLM sessions by three licensed clinical psychologists using CBT competence measures. Our results show a clear trade-off. Human counselors excel at relational strategies -- small talk, self-disclosure, and culturally situated language -- that lead to higher empathy, collaboration, and deeper user reflection. LLM counselors demonstrate higher procedural adherence to CBT techniques but struggle to sustain collaboration, misread cultural cues, and sometimes produce "deceptive empathy," i.e., formulaic warmth that can inflate users' expectations of genuine human care. Taken together, our findings imply that while LLMs might outperform counselors in generating single empathetic responses, their ability to lead sessions is more limited, highlighting that therapy cannot be reduced to a standalone natural language processing (NLP) task. We call for carefully designed human-AI workflows in scalable support: LLMs can scaffold evidence-based techniques, while peers provide relational support. We conclude by mapping concrete design opportunities and ethical guardrails for such hybrid systems.
- Abstract(参考訳): 大規模言語モデル(LLM)はアドホックセラピストとして使われている。
LLMは、単一の孤立した共感反応を生成する際にヒトカウンセラーより優れていることが研究で示唆されているが、セッションレベルの行動はまだ検討されていない。
本研究では、人間カウンセラーのセッションレベルの行動と、同僚のチームによるシングルセッション認知行動療法(CBT)の実施を促すLDMの行動を比較した。
私たちの3段階の混合メソッドの研究は、以下のとおりです。
a) 7人のカウンセラーが反復的に洗練されたCBTが自己相談及び週刊フォーカスグループを通じて促される、テキストベースの支援プラットフォームの1年間のエスノグラフィ
b) CBTが推進するLCMによるヒトカウンセラーセッションのマニュアルシミュレーション
c) CBT能力測定を用いた3人の臨床心理学者による人間とLLMセッションのセッション評価。
私たちの結果は明らかなトレードオフを示している。
人間のカウンセラーは、小さな会話、自己開示、文化的に位置付けられた言語といったリレーショナル戦略に長けており、共感やコラボレーション、より深いユーザリフレクションにつながります。
LLMカウンセラーは、CBT技術により高い手続き的順守を示すが、協力を維持するのに苦労し、文化的な手がかりを誤読し、時には「認知的共感(deceptive empathy)」を生み出す。
以上の結果から,LPMは単一共感反応を誘発するカウンセラーより優れているが,セッションをリードする能力は限定的であり,単独の自然言語処理(NLP)タスクに還元できないことが示唆された。
LLMはエビデンスベースのテクニックを足場として、ピアはリレーショナルサポートを提供します。
我々は、このようなハイブリッドシステムのための具体的な設計の機会と倫理的ガードレールをマッピングすることで結論付ける。
関連論文リスト
- AutoCBT: An Autonomous Multi-agent Framework for Cognitive Behavioral Therapy in Psychological Counseling [57.054489290192535]
伝統的な個人の心理カウンセリングは主にニッチであり、心理学的な問題を持つ個人によって選択されることが多い。
オンラインの自動カウンセリングは、恥の感情によって助けを求めることをためらう人たちに潜在的な解決策を提供する。
論文 参考訳(メタデータ) (2025-01-16T09:57:12Z) - CBT-Bench: Evaluating Large Language Models on Assisting Cognitive Behavior Therapy [67.23830698947637]
認知行動療法(CBT)支援の体系的評価のための新しいベンチマークであるCBT-BENCHを提案する。
我々は, CBT-BENCHにおける3段階の課題を含む: I: 基本的CBT知識獲得, 複数選択質問のタスク; II: 認知的モデル理解, 認知的歪み分類, 主根的信念分類, きめ細かい中核信念分類のタスク; III: 治療的応答生成, CBTセラピーセッションにおける患者音声に対する応答生成のタスク。
実験結果から,LLMはCBT知識のリサイティングに優れるが,複雑な実世界のシナリオでは不十分であることが示唆された。
論文 参考訳(メタデータ) (2024-10-17T04:52:57Z) - Are Large Language Models Possible to Conduct Cognitive Behavioral Therapy? [13.0263170692984]
大規模言語モデル(LLM)が検証され、心理的補助療法の新たな可能性を提供する。
精神保健の専門家は、LSMを治療に使用することについて多くの懸念を抱いている。
自然言語処理性能に優れた4つのLLM変種を評価した。
論文 参考訳(メタデータ) (2024-07-25T03:01:47Z) - Cactus: Towards Psychological Counseling Conversations using Cognitive Behavioral Theory [24.937025825501998]
我々は,認知行動療法(Cognitive Behavioral Therapy, CBT)の目標指向的, 構造化的アプローチを用いて, 実生活インタラクションをエミュレートする多ターン対話データセットを作成する。
我々は、実際のカウンセリングセッションの評価、専門家の評価との整合性の確保に使用される確立された心理学的基準をベンチマークする。
Cactusで訓練されたモデルであるCamelはカウンセリングスキルにおいて他のモデルよりも優れており、カウンセリングエージェントとしての有効性と可能性を強調している。
論文 参考訳(メタデータ) (2024-07-03T13:41:31Z) - HealMe: Harnessing Cognitive Reframing in Large Language Models for Psychotherapy [25.908522131646258]
メンタルエンハンスメント(HealMe)モデルにおける適応言語によるヘルピングとエンパワーメントについて紹介する。
この新しい認知的リフレーミング療法は、根深い否定的思考に効果的に対処し、合理的でバランスの取れた視点を育む。
我々は、認知リフレーミングのパフォーマンスを厳格に評価するために特別に設計された、包括的で専門的な心理学的評価指標を採用した。
論文 参考訳(メタデータ) (2024-02-26T09:10:34Z) - PsychoGAT: A Novel Psychological Measurement Paradigm through Interactive Fiction Games with LLM Agents [68.50571379012621]
心理的な測定は、精神健康、自己理解、そして個人の発達に不可欠である。
心理学ゲームAgenT(サイコガト)は、信頼性、収束妥当性、差別的妥当性などの心理学的指標において統計的に有意な卓越性を達成している。
論文 参考訳(メタデータ) (2024-02-19T18:00:30Z) - Chain of Empathy: Enhancing Empathetic Response of Large Language Models Based on Psychotherapy Models [2.679689033125693]
本稿では,心理療法の知見を活かして,大規模言語モデル(LLM)を誘導し,人間の感情状態を理解する新しい方法である「共感の連鎖(CoE)」を提案する。
この方法は認知行動療法(CBT)、弁証的行動療法(DBT)、人中心療法(PCT)、現実療法(RT)など様々な心理療法のアプローチにインスパイアされている。
論文 参考訳(メタデータ) (2023-11-02T02:21:39Z) - Automated Fidelity Assessment for Strategy Training in Inpatient
Rehabilitation using Natural Language Processing [53.096237570992294]
戦略トレーニング (Strategy Training) とは、脳卒中後の認知障害患者に障害を減らすためのスキルを教える、リハビリテーションのアプローチである。
標準化された忠実度評価は治療原則の遵守度を測定するために用いられる。
本研究では,ルールベースNLPアルゴリズム,長短項メモリ(LSTM)モデル,および変換器(BERT)モデルからの双方向エンコーダ表現を開発した。
論文 参考訳(メタデータ) (2022-09-14T15:33:30Z) - Enabling AI and Robotic Coaches for Physical Rehabilitation Therapy:
Iterative Design and Evaluation with Therapists and Post-Stroke Survivors [66.07833535962762]
人工知能(AI)とロボットコーチは、社会的相互作用を通じてリハビリテーション運動における患者の関与を改善することを約束する。
これまでの研究は、AIやロボットコーチの運動を自動的に監視する可能性を探ったが、デプロイは依然として難しい課題だ。
我々は,AIとロボットコーチが患者の運動をどのように操作し,指導するかに関する詳細な設計仕様を提示する。
論文 参考訳(メタデータ) (2021-06-15T22:06:39Z) - STAN: A stuttering therapy analysis helper [59.37911277681339]
発声は、繰り返し、音、音節または単語の延長、発話中のブロックによって識別される複雑な音声障害である。
本稿では, 言語療法士を支援するシステムSTANについて紹介する。
論文 参考訳(メタデータ) (2021-06-15T13:48:12Z) - MET: Multimodal Perception of Engagement for Telehealth [52.54282887530756]
ビデオから人間のエンゲージメントレベルを知覚する学習ベースアルゴリズムMETを提案する。
我々はメンタルヘルス患者のエンゲージメント検出のための新しいデータセットMEDICAをリリースした。
論文 参考訳(メタデータ) (2020-11-17T15:18:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。