論文の概要: Physics-Guided Foundation Model for Scientific Discovery: An Application to Aquatic Science
- arxiv url: http://arxiv.org/abs/2502.06084v1
- Date: Mon, 10 Feb 2025 00:48:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-11 14:36:29.382487
- Title: Physics-Guided Foundation Model for Scientific Discovery: An Application to Aquatic Science
- Title(参考訳): 科学発見のための物理誘導基礎モデル:水理科学への応用
- Authors: Runlong Yu, Chonghao Qiu, Robert Ladwig, Paul Hanson, Yiqun Xie, Xiaowei Jia,
- Abstract要約: 事前学習したMLモデルと物理モデルを組み合わせたtextittextbfPhysics-textbfGuided textbfFoundation textbfModel(textbfPGFM)を提案する。
実世界の湖沼における水温と溶存酸素動態のモデル化における本手法の有効性を実証する。
- 参考スコア(独自算出の注目度): 13.28811382673697
- License:
- Abstract: Physics-guided machine learning (PGML) has become a prevalent approach in studying scientific systems due to its ability to integrate scientific theories for enhancing machine learning (ML) models. However, most PGML approaches are tailored to isolated and relatively simple tasks, which limits their applicability to complex systems involving multiple interacting processes and numerous influencing features. In this paper, we propose a \textit{\textbf{P}hysics-\textbf{G}uided \textbf{F}oundation \textbf{M}odel (\textbf{PGFM})} that combines pre-trained ML models and physics-based models and leverages their complementary strengths to improve the modeling of multiple coupled processes. To effectively conduct pre-training, we construct a simulated environmental system that encompasses a wide range of influencing features and various simulated variables generated by physics-based models. The model is pre-trained in this system to adaptively select important feature interactions guided by multi-task objectives. We then fine-tune the model for each specific task using true observations, while maintaining consistency with established physical theories, such as the principles of mass and energy conservation. We demonstrate the effectiveness of this methodology in modeling water temperature and dissolved oxygen dynamics in real-world lakes. The proposed PGFM is also broadly applicable to a range of scientific fields where physics-based models are being used.
- Abstract(参考訳): 物理誘導機械学習(PGML)は、機械学習(ML)モデルを強化する科学的理論を統合する能力から、科学システムの研究において一般的なアプローチとなっている。
しかし、ほとんどのPGMLアプローチは、分離された比較的単純なタスクに適合しており、複数の相互作用プロセスと多数の影響のある機能を含む複雑なシステムに適用性を制限する。
本稿では,事前学習したMLモデルと物理モデルを組み合わせて,それらの相補的な強みを活用し,複数の結合プロセスのモデリングを改善することを目的とした, \textit{\textbf{P}hysics-\textbf{G}uided \textbf{F}oundation \textbf{M}odel (\textbf{PGFM})}を提案する。
プレトレーニングを効果的に行うために,物理モデルにより生成される幅広い影響特徴と様々なシミュレーション変数を含むシミュレーション環境システムを構築した。
本システムは,マルチタスク目的によって誘導される重要な特徴の相互作用を適応的に選択するために,事前学習を行う。
次に、実測値を用いて各タスクのモデルを微調整し、質量保存原理やエネルギー保存原理などの確立した物理理論との整合性を維持した。
実世界の湖沼における水温と溶存酸素動態のモデル化における本手法の有効性を実証する。
提案されたPGFMは、物理学に基づくモデルが使われている様々な科学分野にも広く適用できる。
関連論文リスト
- MAPS: Advancing Multi-Modal Reasoning in Expert-Level Physical Science [62.96434290874878]
現在のMLLM(Multi-Modal Large Language Models)は、一般的な視覚的推論タスクにおいて強力な機能を示している。
我々は,MLLMに基づく物理知覚とシミュレーションによるマルチモーダル科学推論(MAPS)という新しいフレームワークを開発した。
MAPSは、専門家レベルのマルチモーダル推論タスクを物理的知覚モデル(PPM)を介して物理図理解に分解し、シミュレータを介して物理的知識で推論する。
論文 参考訳(メタデータ) (2025-01-18T13:54:00Z) - Data-Efficient Inference of Neural Fluid Fields via SciML Foundation Model [49.06911227670408]
本研究では,SciML基礎モデルにより,現実の3次元流体力学を推定する際のデータ効率を大幅に向上できることを示す。
基礎モデルから抽出した拡張ビューと流体特徴を利用した新しい協調学習手法をニューラルネットワークに装備する。
論文 参考訳(メタデータ) (2024-12-18T14:39:43Z) - LLMPhy: Complex Physical Reasoning Using Large Language Models and World Models [35.01842161084472]
そこで我々は,TraySimという物理推論タスクとデータセットを提案する。
私たちのタスクは、外部の影響を受けるトレイ上のいくつかのオブジェクトのダイナミクスを予測することです。
LLMの物理知識とプログラム合成能力を活用するゼロショットブラックボックス最適化フレームワークであるLLMPhyを提案する。
この結果から,LLMと物理エンジンの組み合わせにより,最先端のゼロショット物理推論性能が得られることがわかった。
論文 参考訳(メタデータ) (2024-11-12T18:56:58Z) - A Mass-Conserving-Perceptron for Machine Learning-Based Modeling of Geoscientific Systems [1.1510009152620668]
我々は,PCベースとMLベースのモデリングアプローチのギャップを埋める手段として,物理的に解釈可能なMass Conserving Perceptron (MCP)を提案する。
MCPは、PCモデルの基礎となる有向グラフ構造とGRNNの間の固有同型を利用して、物理過程の質量保存性を明確に表す。
論文 参考訳(メタデータ) (2023-10-12T18:09:33Z) - Which priors matter? Benchmarking models for learning latent dynamics [70.88999063639146]
古典力学の先行概念を機械学習モデルに統合する手法が提案されている。
これらのモデルの現在の機能について、精査する。
連続的および時間的可逆的ダイナミクスの使用は、すべてのクラスのモデルに恩恵をもたらす。
論文 参考訳(メタデータ) (2021-11-09T23:48:21Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
データ駆動モデリングは、真のシステムの観測からシステムの力学の近似を学ぼうとする代替パラダイムである。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概要に加えて、関連する文献を概説し、このモデリングパラダイムが克服すべき数値シミュレーションから最も重要な課題を概説する。
論文 参考訳(メタデータ) (2021-11-02T10:51:42Z) - Enhancing predictive skills in physically-consistent way: Physics
Informed Machine Learning for Hydrological Processes [1.0635248457021496]
本研究では,概念的水文モデルのプロセス理解と最先端MLモデルの予測能力を組み合わせた物理インフォームド機械学習(PIML)モデルを開発する。
提案したモデルを用いて,インドのナルマダ川流域における目標(流れ流)と中間変数(実際の蒸発吸引)の月次時間系列を予測する。
論文 参考訳(メタデータ) (2021-04-22T12:13:42Z) - PlasticineLab: A Soft-Body Manipulation Benchmark with Differentiable
Physics [89.81550748680245]
PasticineLabと呼ばれる新しい微分可能な物理ベンチマークを導入する。
各タスクにおいて、エージェントはマニピュレータを使用して、プラスチックを所望の構成に変形させる。
本稿では,既存の強化学習(RL)手法と勾配に基づく手法について評価する。
論文 参考訳(メタデータ) (2021-04-07T17:59:23Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
我々は、不完全物理モデルの深部生成モデルへの統合に焦点を当てる。
本稿では,潜在空間の一部が物理によって基底づけられたVAEアーキテクチャを提案する。
合成および実世界のデータセットの集合に対して生成的性能改善を示す。
論文 参考訳(メタデータ) (2021-02-25T20:28:52Z) - Modeling System Dynamics with Physics-Informed Neural Networks Based on
Lagrangian Mechanics [3.214927790437842]
第一原則の手法は高いバイアスに悩まされるが、データ駆動モデリングは高いばらつきを持つ傾向がある。
本稿では,2つのモデリング手法を組み合わせて上記の問題を解くハイブリッドモデルであるPINODEについて述べる。
本研究の目的は,機械系のモデルベース制御とシステム同定である。
論文 参考訳(メタデータ) (2020-05-29T15:10:43Z) - Physics-Guided Machine Learning for Scientific Discovery: An Application
in Simulating Lake Temperature Profiles [8.689056739160593]
本稿では,RNNと物理モデルを組み合わせた物理誘導リカレントニューラルネットワークモデル(PGRNN)を提案する。
PGRNNは物理法則と整合した出力を生成しながら、物理モデルよりも予測精度を向上させることができることを示す。
湖沼の温度のダイナミクスをモデル化する文脈において,本手法を提示し,評価するが,より広い範囲の科学・工学分野に適用できる。
論文 参考訳(メタデータ) (2020-01-28T15:44:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。