論文の概要: A Linearly Convergent Algorithm for Computing the Petz-Augustin Mean
- arxiv url: http://arxiv.org/abs/2502.06399v2
- Date: Wed, 16 Jul 2025 08:03:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-17 14:40:09.242846
- Title: A Linearly Convergent Algorithm for Computing the Petz-Augustin Mean
- Title(参考訳): Petz-Augustin平均計算のための線形収束アルゴリズム
- Authors: Chun-Neng Chu, Wei-Fu Tseng, Yen-Huan Li,
- Abstract要約: ペッツ=アウグスティン平均の (0,1) カップ (1,infty)$) における位数 $alpha の計算について検討する。
この最適化問題を解くために,非漸近収束保証を用いた最初のアルゴリズムを提案する。
我々は、全ての量子状態が通勤すると、ペッツ=アウグスティン平均の$alpha$がフィッシャー市場の平衡価格と同値であることを確立する。
- 参考スコア(独自算出の注目度): 2.059931105362387
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the computation of the Petz-Augustin mean of order $\alpha \in (0,1) \cup (1,\infty)$, defined as the minimizer of a weighted sum of $n$ Petz-R\'enyi divergences of order $\alpha$ over the set of $d$-by-$d$ quantum states, where the Petz-R\'enyi divergence is a quantum generalization of the classical R\'enyi divergence. We propose the first algorithm with a non-asymptotic convergence guarantee for solving this optimization problem. The iterates are guaranteed to converge to the Petz-Augustin mean at a linear rate of \( O\left( \lvert 1 - 1/\alpha \rvert^T \right) \) with respect to the Thompson metric for $\alpha\in(1/2,1)\cup(1,\infty)$, where \( T \) denotes the number of iterations. The algorithm has an initialization time complexity of $O\left(nd^3\right)$ and a per-iteration time complexity of $O\left(nd^2 + d^3\right)$. Two applications follow. First, we propose the first iterative method with a non-asymptotic convergence guarantee for computing the Petz capacity of order $\alpha\in(1/2,1)$, which generalizes the quantum channel capacity and characterizes the optimal error exponent in classical-quantum channel coding. Second, we establish that the Petz-Augustin mean of order $\alpha$, when all quantum states commute, is equivalent to the equilibrium prices in Fisher markets with constant elasticity of substitution (CES) utilities of common elasticity $\rho=1-1/\alpha$, and our proposed algorithm can be interpreted as a t\^{a}tonnement dynamic. We then extend the proposed algorithm to inhomogeneous Fisher markets, where buyers have different elasticities, and prove that it achieves a faster convergence rate compared to existing t\^{a}tonnement-type algorithms.
- Abstract(参考訳): 我々は、位数 $\alpha \in (0,1) \cup (1,\infty)$ のペッツ=アウグスティン平均の計算を、古典的な R'enyi の分域の量子化である$d$-by-$d$ の集合上の位数 $\alpha$ の重み付き和の最小値として定義する。
この最適化問題を解くために,非漸近収束保証を用いた最初のアルゴリズムを提案する。
反復はペッツ=アウグスティン平均(英語版)(Petz-Augustin mean)に収束することが保証される: \(O\left( \lvert 1 - 1/\alpha \rvert^T \right) \) で、トンプソン計量の$\alpha\in(1/2,1)\cup(1,\infty)$(T \) は反復数を表す。
このアルゴリズムは初期化時間の複雑さを$O\left(nd^3\right)$とし、時間単位の複雑性を$O\left(nd^2 + d^3\right)$とする。
2つの応用がある。
まず、量子チャネルのキャパシティを一般化し、古典量子チャネル符号化における最適誤差指数を特徴付ける、ペッツ容量を計算するための非漸近収束保証付き最初の反復法を提案する。
第二に、ペッツ=アウグスティン平均のオーダー$\alpha$は、全ての量子状態が可換であるときに、置換(CES)の一定の弾力性を持つフィッシャー市場の平衡価格と等価であり、共通の弾力性$\rho=1-1/\alpha$であり、提案アルゴリズムはt\^{a}トネメント力学と解釈できる。
次に,提案アルゴリズムを不均質なフィッシャー市場へ拡張し,購入者が弾性の異なる市場に展開し,既存の t\^{a} トンネメント型アルゴリズムと比較してより高速な収束率が得られることを示す。
関連論文リスト
- Finite-Time Bounds for Two-Time-Scale Stochastic Approximation with Arbitrary Norm Contractions and Markovian Noise [7.770605097524015]
2時間スケール近似(英: Two-time-scale Approximation、SA)は、強化学習と最適化に応用した反復アルゴリズムである。
強化学習の応用により、非線型2時間スケール SA 上の最初の平均正方形を与える。
論文 参考訳(メタデータ) (2025-03-24T07:03:23Z) - Convergence Rate Analysis of LION [54.28350823319057]
LION は、勾配カルシュ=クーン=T (sqrtdK-)$で測定された $cal(sqrtdK-)$ の反復を収束する。
従来のSGDと比較して,LIONは損失が小さく,性能も高いことを示す。
論文 参考訳(メタデータ) (2024-11-12T11:30:53Z) - Quantum spectral method for gradient and Hessian estimation [4.193480001271463]
勾配降下は連続最適化問題を解くための最も基本的なアルゴリズムの1つである。
本稿では、クエリの複雑さを$widetildeO (1/varepsilon)$とすることで、その勾配の$varepsilon$-approximationを返す量子アルゴリズムを提案する。
また、ニュートン法の量子アナログを改善することを目的としたヘッセン推定のための2つの量子アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-07-04T11:03:48Z) - Towards Optimal Circuit Size for Sparse Quantum State Preparation [10.386753939552872]
我々は、$s$非ゼロ振幅を持つ$n$量子ビットスパース量子状態の準備を検討し、2つのアルゴリズムを提案する。
最初のアルゴリズムは$O(ns/log n + n)$ gatesを使用し、以前のメソッドを$O(log n)$で改善する。
2番目のアルゴリズムは、短いハミルトニアンパスを示す二進弦向けに調整されている。
論文 参考訳(メタデータ) (2024-04-08T02:13:40Z) - Fast Minimization of Expected Logarithmic Loss via Stochastic Dual
Averaging [8.990961435218544]
本稿では,対数障壁を用いたB$-sample双対平均化法を提案する。
Poisson逆問題に対して、我々のアルゴリズムは$smashtildeO(d3/varepsilon2)$ timeで$varepsilon$解を得る。
量子状態トモグラフィーの最大線量推定を計算するとき、我々のアルゴリズムは $smashtildeO(d3/varepsilon2)$ time で $varepsilon$-optimal Solution を得る。
論文 参考訳(メタデータ) (2023-11-05T03:33:44Z) - Sketching Algorithms for Sparse Dictionary Learning: PTAS and Turnstile
Streaming [48.18845814885398]
本研究は,スプリス辞書学習とユークリッド語$k$-meansクラスタリング問題に対するスケッチベースアプローチの適用性を高めるための新しい手法を開発した。
高速アルゴリズムでは、$k$-meansクラスタリング問題に対してPTASを設計するための新しいアプローチを得る。
ストリーミングアルゴリズムの分野では、辞書学習と$k$-meansクラスタリングのための新しい上限と下位境界を得る。
論文 参考訳(メタデータ) (2023-10-29T16:46:26Z) - Do you know what q-means? [50.045011844765185]
クラスタリングは、大規模なデータセットを分析する上で最も重要なツールの1つである。
クラスタリングのための"$q$-means"アルゴリズムの改良版を提案する。
また、$Obig(frack2varepsilon2(sqrtkd + log(Nd))big で実行される $varepsilon に対する "dequantized" アルゴリズムも提示する。
論文 参考訳(メタデータ) (2023-08-18T17:52:12Z) - Near-Optimal Quantum Coreset Construction Algorithms for Clustering [15.513270929560088]
我々は、$tildeO(sqrtnkd3/2)$クエリ複雑性を持つ$mathbbRd$で$k$-clusteringのコアセットを見つける量子アルゴリズムを与える。
私たちのコアセットは入力サイズを$n$から$mathrmpoly(kepsilon-1d)$に減らします。
論文 参考訳(メタデータ) (2023-06-05T12:22:46Z) - Private estimation algorithms for stochastic block models and mixture
models [63.07482515700984]
効率的なプライベート推定アルゴリズムを設計するための一般的なツール。
最初の効率的な$(epsilon, delta)$-differentially private algorithm for both weak recovery and exact recovery。
論文 参考訳(メタデータ) (2023-01-11T09:12:28Z) - A Quantum Algorithm Framework for Discrete Probability Distributions with Applications to Rényi Entropy Estimation [13.810917492304565]
離散確率分布の特性を推定するための統一量子アルゴリズムフレームワークを提案する。
我々のフレームワークは、$alpha$-R'enyi entropy $H_alpha(p)$を、少なくとも2/3$の確率で加算エラー$epsilon$内で推定する。
論文 参考訳(メタデータ) (2022-12-03T08:01:55Z) - Mind the gap: Achieving a super-Grover quantum speedup by jumping to the
end [114.3957763744719]
本稿では,数種類のバイナリ最適化問題に対して,厳密な実行保証を有する量子アルゴリズムを提案する。
このアルゴリズムは、$n$非依存定数$c$に対して、時間で$O*(2(0.5-c)n)$の最適解を求める。
また、$k$-spinモデルからのランダムなインスタンスの多数と、完全に満足あるいはわずかにフラストレーションされた$k$-CSP式に対して、文 (a) がそうであることを示す。
論文 参考訳(メタデータ) (2022-12-03T02:45:23Z) - A (simple) classical algorithm for estimating Betti numbers [1.8749305679160366]
経路積分モンテカルロ法を用いて、$k$-th正規化ベッチ数を$n$要素上の単純複素数として推定する簡単なアルゴリズムを記述する。
一般の単純複素数に対して、我々のアルゴリズムの実行時間は$nOleft(frac1sqrtgammalogfrac1varepsilonright)$で、加法精度は (0,$1) のラプラシアンとヴァレプシロンのスペクトルギャップを測定する$gamma$である。
論文 参考訳(メタデータ) (2022-11-17T16:10:47Z) - Sharper Convergence Guarantees for Asynchronous SGD for Distributed and
Federated Learning [77.22019100456595]
通信周波数の異なる分散計算作業者のトレーニングアルゴリズムを示す。
本研究では,より厳密な収束率を$mathcalO!!(sigma2-2_avg!)とする。
また,不均一性の項は,作業者の平均遅延によっても影響されることを示した。
論文 参考訳(メタデータ) (2022-06-16T17:10:57Z) - The First Optimal Acceleration of High-Order Methods in Smooth Convex
Optimization [88.91190483500932]
本研究では,滑らかな凸最小化問題の解法として最適高次アルゴリズムを求めるための基本的オープンな問題について検討する。
この理由は、これらのアルゴリズムが複雑なバイナリプロシージャを実行する必要があるため、最適でも実用でもないからである。
我々は、最初のアルゴリズムに$mathcalOleft(epsilon-2/(p+1)right)$pthのオーダーオーラクル複雑性を与えることで、この根本的な問題を解決する。
論文 参考訳(メタデータ) (2022-05-19T16:04:40Z) - Random quantum circuits transform local noise into global white noise [118.18170052022323]
低忠実度状態におけるノイズランダム量子回路の測定結果の分布について検討する。
十分に弱くユニタリな局所雑音に対して、一般的なノイズ回路インスタンスの出力分布$p_textnoisy$間の相関(線形クロスエントロピーベンチマークで測定)は指数関数的に減少する。
ノイズが不整合であれば、出力分布は、正確に同じ速度で均一分布の$p_textunif$に近づく。
論文 参考訳(メタデータ) (2021-11-29T19:26:28Z) - Online Sub-Sampling for Reinforcement Learning with General Function
Approximation [111.01990889581243]
本稿では,RLアルゴリズムによって収集されたデータポイントの情報取得量を測定する,効率的なオンラインサブサンプリングフレームワークを確立する。
複雑性バウンド関数クラスを持つ値ベースのメソッドの場合、$proptooperatornamepolylog(K)$ timesに対してのみポリシーを更新する必要がある。
少なくとも$Omega(K)$倍のポリシーを更新する既存のアプローチとは対照的に、当社のアプローチはポリシーの解決における最適化コールの数を劇的に削減します。
論文 参考訳(メタデータ) (2021-06-14T07:36:25Z) - Higher-order Derivatives of Weighted Finite-state Machines [68.43084108204741]
本研究では、重み付き有限状態機械の正規化定数に関する高次微分の計算について検討する。
文献に記載されていないすべての順序の導関数を評価するための一般アルゴリズムを提案する。
我々のアルゴリズムは以前のアルゴリズムよりもはるかに高速である。
論文 参考訳(メタデータ) (2021-06-01T19:51:55Z) - Accelerating Optimization and Reinforcement Learning with
Quasi-Stochastic Approximation [2.294014185517203]
本稿では、収束理論を準確率近似に拡張することを目的とする。
強化学習のためのグラデーションフリー最適化とポリシー勾配アルゴリズムへの応用について説明する。
論文 参考訳(メタデータ) (2020-09-30T04:44:45Z) - Finite-Time Analysis for Double Q-learning [50.50058000948908]
二重Q-ラーニングのための非漸近的有限時間解析を初めて提供する。
同期と非同期の二重Q-ラーニングの両方が,グローバル最適化の$epsilon$-accurate近辺に収束することが保証されていることを示す。
論文 参考訳(メタデータ) (2020-09-29T18:48:21Z) - Convergence of Langevin Monte Carlo in Chi-Squared and Renyi Divergence [8.873449722727026]
推定値である$widetildemathcalO(depsilon-1)$が,これらの測定値の既知レートを改善することを示す。
特に凸および1次滑らかなポテンシャルについて、LCCアルゴリズムは、これらの測定値の既知率を改善するために$widetildemathcalO(depsilon-1)$を推定する。
論文 参考訳(メタデータ) (2020-07-22T18:18:28Z) - Streaming Complexity of SVMs [110.63976030971106]
本稿では,ストリーミングモデルにおけるバイアス正規化SVM問題を解く際の空間複雑性について検討する。
両方の問題に対して、$frac1lambdaepsilon$の次元に対して、$frac1lambdaepsilon$よりも空間的に小さいストリーミングアルゴリズムを得ることができることを示す。
論文 参考訳(メタデータ) (2020-07-07T17:10:00Z) - Continuous Submodular Maximization: Beyond DR-Submodularity [48.04323002262095]
最初に、バニラ座標の昇華の単純な変種を証明し、Coordinate-Ascent+ と呼ぶ。
次にCoordinate-Ascent++を提案し、同じ回数のイテレーションを実行しながら(1-1/e-varepsilon)$-approximationを保証する。
Coordinate-Ascent++の各ラウンドの計算は容易に並列化でき、マシン当たりの計算コストは$O(n/sqrtvarepsilon+nlog n)$である。
論文 参考訳(メタデータ) (2020-06-21T06:57:59Z) - Improved quantum algorithm for A-optimal projection [4.248054546466641]
本稿では、Duan emphet al.のアルゴリズムの時間的複雑さを$(frackappa4ssqrtks epsilonsmathrmpolylog)$に補正する。
我々のアルゴリズムは、Duan emphet al.のアルゴリズムと比較して少なくとも1つのスピードアップを達成する。
論文 参考訳(メタデータ) (2020-06-10T09:31:53Z) - A Simple Convergence Proof of Adam and Adagrad [74.24716715922759]
我々はAdam Adagradと$O(d(N)/st)$アルゴリズムの収束の証明を示す。
Adamはデフォルトパラメータで使用する場合と同じ収束$O(d(N)/st)$で収束する。
論文 参考訳(メタデータ) (2020-03-05T01:56:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。