論文の概要: Enhancing Trust in Language Model-Based Code Optimization through RLHF: A Research Design
- arxiv url: http://arxiv.org/abs/2502.06769v1
- Date: Mon, 10 Feb 2025 18:48:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-11 14:34:14.190432
- Title: Enhancing Trust in Language Model-Based Code Optimization through RLHF: A Research Design
- Title(参考訳): RLHFによる言語モデルに基づくコード最適化の信頼性向上に関する研究
- Authors: Jingzhi Gong,
- Abstract要約: 本研究の目的は、人間のフィードバックを効果的に統合する、信頼性の高いLMを用いたコード最適化手法を開発することである。
この作業は、ソフトウェアエンジニアリングの協力的側面と人間中心の側面を前進させるという、より広範な目標と一致します。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: With the rapid advancement of AI, software engineering increasingly relies on AI-driven approaches, particularly language models (LMs), to enhance code performance. However, the trustworthiness and reliability of LMs remain significant challenges due to the potential for hallucinations -- unreliable or incorrect responses. To fill this gap, this research aims to develop reliable, LM-powered methods for code optimization that effectively integrate human feedback. This work aligns with the broader objectives of advancing cooperative and human-centric aspects of software engineering, contributing to the development of trustworthy AI-driven solutions.
- Abstract(参考訳): AIの急速な進歩により、ソフトウェアエンジニアリングは、コードパフォーマンスを向上させるために、AI駆動のアプローチ、特に言語モデル(LM)にますます依存している。
しかし、LMの信頼性と信頼性は、幻覚の可能性を秘めている。
このギャップを埋めるために、人間のフィードバックを効果的に統合する、信頼性の高いLMによるコード最適化手法を開発することを目的としている。
この作業は、ソフトウェアエンジニアリングの協力的および人間中心的な側面を前進させるという、より広範な目標と一致し、信頼できるAI駆動ソリューションの開発に寄与する。
関連論文リスト
- Data Analysis in the Era of Generative AI [56.44807642944589]
本稿では,AIを活用したデータ分析ツールの可能性について考察する。
我々は、大規模言語とマルチモーダルモデルの出現が、データ分析ワークフローの様々な段階を強化する新しい機会を提供する方法について検討する。
次に、直感的なインタラクションを促進し、ユーザ信頼を構築し、AI支援分析ワークフローを複数のアプリにわたって合理化するための、人間中心の設計原則を調べます。
論文 参考訳(メタデータ) (2024-09-27T06:31:03Z) - Better Python Programming for all: With the focus on Maintainability [5.669063174637433]
本研究では,Large Language Models (LLM) が生成するコードの保守性向上を目的とした。
私たちのアプローチでは、モデルをトレーニングし、評価するために特別に設計されたデータセットを使用します。
LLMを微調整してコードの保守性を優先順位付けした後、我々の評価は、このモデルがコードの保守性標準を大幅に改善することを示している。
論文 参考訳(メタデータ) (2024-08-17T08:14:22Z) - Agent-Driven Automatic Software Improvement [55.2480439325792]
本提案は,Large Language Models (LLMs) を利用したエージェントの展開に着目して,革新的なソリューションの探求を目的とする。
継続的学習と適応を可能にするエージェントの反復的性質は、コード生成における一般的な課題を克服するのに役立ちます。
我々は,これらのシステムにおける反復的なフィードバックを用いて,エージェントの基盤となるLLMをさらに微調整し,自動化されたソフトウェア改善のタスクに整合性を持たせることを目指している。
論文 参考訳(メタデータ) (2024-06-24T15:45:22Z) - Mixture of insighTful Experts (MoTE): The Synergy of Thought Chains and Expert Mixtures in Self-Alignment [103.05005690990271]
従来のアライメント戦略は人間の介入に大きく依存しており、例えばSupervised Fine-Tuning(SFT)やReinforcement Learning from Human Feedback(RLHF)などである。
本稿では、AlignCoTと呼ばれる思考の連鎖(CoT)アプローチを利用した新しい自己アライメント手法を提案する。
本稿では、AlignCoTプロセスの各コンポーネントを強化するために専門家の混合を適用し、アライメント効率を著しく向上させるMoTEアーキテクチャについて紹介する。
論文 参考訳(メタデータ) (2024-05-01T15:06:05Z) - AI-powered Code Review with LLMs: Early Results [10.37036924997437]
本稿では,Large Language Model (LLM) ベースのモデルを用いて,ソフトウェアの品質と効率を改善する新しい手法を提案する。
提案するLLMベースのAIエージェントモデルは,大規模コードリポジトリ上でトレーニングされている。
コードの臭いを検出し、潜在的なバグを特定し、改善の提案を提供し、コードを最適化することを目的としている。
論文 参考訳(メタデータ) (2024-04-29T08:27:50Z) - Open-Source AI-based SE Tools: Opportunities and Challenges of Collaborative Software Learning [23.395624804517034]
大規模言語モデル(LLM)は、ソフトウェア工学(SE)タスクの進展に役立っている。
これらのAIベースのSEモデルのコラボレーションは、高品質なデータソースの最大化に重点を置いている。
特に高品質のデータは、しばしば商業的または機密性の高い価値を持ち、オープンソースAIベースのSEプロジェクトではアクセスできない。
論文 参考訳(メタデータ) (2024-04-09T10:47:02Z) - Large Language Model-based Human-Agent Collaboration for Complex Task
Solving [94.3914058341565]
複雑なタスク解決のためのLarge Language Models(LLM)に基づくヒューマンエージェントコラボレーションの問題を紹介する。
Reinforcement Learning-based Human-Agent Collaboration method, ReHACを提案する。
このアプローチには、タスク解決プロセスにおける人間の介入の最も急進的な段階を決定するために設計されたポリシーモデルが含まれている。
論文 参考訳(メタデータ) (2024-02-20T11:03:36Z) - DeAL: Decoding-time Alignment for Large Language Models [59.63643988872571]
大規模言語モデル(LLM)は、現在、人間の好みに沿ったコンテンツを生成することが期待されている。
本稿では,報酬関数をカスタマイズ可能なフレームワークであるDeALを提案し,LLMのDetime Alignmentを可能にする。
実験の結果,粒度の細かいトレードオフでDeALを実現できること,アライメント目標への適合性の向上,LLMの残差の解消が可能であることがわかった。
論文 参考訳(メタデータ) (2024-02-05T06:12:29Z) - Comparing Software Developers with ChatGPT: An Empirical Investigation [0.0]
本稿では,ChatGPTのようなソフトウェア技術者やAIシステムのパフォーマンスを,さまざまな評価指標で比較した実証的研究を行う。
この論文は、さまざまな評価基準を考慮して、ソフトウェアエンジニアとAIベースのソリューションの包括的な比較が、人間と機械のコラボレーションを促進する上で重要であることを示唆している。
論文 参考訳(メタデータ) (2023-05-19T17:25:54Z) - Data-Driven and SE-assisted AI Model Signal-Awareness Enhancement and
Introspection [61.571331422347875]
モデルの信号認識性を高めるためのデータ駆動型手法を提案する。
コード複雑性のSE概念とカリキュラム学習のAIテクニックを組み合わせる。
モデル信号認識における最大4.8倍の改善を実現している。
論文 参考訳(メタデータ) (2021-11-10T17:58:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。