Integrating Generative Artificial Intelligence in ADRD: A Roadmap for Streamlining Diagnosis and Care in Neurodegenerative Diseases
- URL: http://arxiv.org/abs/2502.06842v3
- Date: Fri, 01 Aug 2025 19:21:40 GMT
- Title: Integrating Generative Artificial Intelligence in ADRD: A Roadmap for Streamlining Diagnosis and Care in Neurodegenerative Diseases
- Authors: Andrew G. Breithaupt, Michael Weiner, Alice Tang, Katherine L. Possin, Marina Sirota, James Lah, Allan I. Levey, Pascal Van Hentenryck, Reza Zandehshahvar, Marilu Luisa Gorno-Tempini, Joseph Giorgio, Jingshen Wang, Andreas M. Rauschecker, Howard J. Rosen, Rachel L. Nosheny, Bruce L. Miller, Pedro Pinheiro-Chagas,
- Abstract summary: Healthcare systems are struggling to meet the growing demand for neurological care, particularly in Alzheimer's disease and related dementias.<n>We propose that LLM-based generative AI systems can enhance clinician capabilities to approach specialist-level assessment and decision-making in ADRD care at scale.
- Score: 8.903189530397318
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Healthcare systems are struggling to meet the growing demand for neurological care, particularly in Alzheimer's disease and related dementias (ADRD). We propose that LLM-based generative AI systems can enhance clinician capabilities to approach specialist-level assessment and decision-making in ADRD care at scale. This article presents a comprehensive six-phase roadmap for responsible design and integration of such systems into ADRD care: (1) high-quality standardized data collection across modalities; (2) decision support; (3) clinical integration enhancing workflows; (4) rigorous validation and monitoring protocols; (5) continuous learning through clinical feedback; and (6) robust ethics and risk management frameworks. This human centered approach optimizes clinicians' capabilities in comprehensive data collection, interpretation of complex clinical information, and timely application of relevant medical knowledge while prioritizing patient safety, healthcare equity, and transparency. Though focused on ADRD, these principles offer broad applicability across medical specialties facing similar systemic challenges.
Related papers
- Medical Reasoning in the Era of LLMs: A Systematic Review of Enhancement Techniques and Applications [59.721265428780946]
Large Language Models (LLMs) in medicine have enabled impressive capabilities, yet a critical gap remains in their ability to perform systematic, transparent, and verifiable reasoning.<n>This paper provides the first systematic review of this emerging field.<n>We propose a taxonomy of reasoning enhancement techniques, categorized into training-time strategies and test-time mechanisms.
arXiv Detail & Related papers (2025-08-01T14:41:31Z) - Expertise Is What We Want [0.0]
We share an application architecture, the Large Language Expert (LLE), that combines the flexibility and power of Large Language Models (LLMs) with the interpretability, explainability, and reliability of Expert Systems.
To highlight the power of the Large Language Expert (LLE) system, we built an LLE to assist with the workup of patients newly diagnosed with cancer.
arXiv Detail & Related papers (2025-02-27T18:05:15Z) - Towards Privacy-aware Mental Health AI Models: Advances, Challenges, and Opportunities [61.633126163190724]
Mental illness is a widespread and debilitating condition with substantial societal and personal costs.<n>Recent advances in Artificial Intelligence (AI) hold great potential for recognizing and addressing conditions such as depression, anxiety disorder, bipolar disorder, schizophrenia, and post-traumatic stress disorder.<n>Privacy concerns, including the risk of sensitive data leakage from datasets and trained models, remain a critical barrier to deploying these AI systems in real-world clinical settings.
arXiv Detail & Related papers (2025-02-01T15:10:02Z) - Artificial Intelligence-Driven Clinical Decision Support Systems [5.010570270212569]
The chapter emphasizes that creating trustworthy AI systems in healthcare requires careful consideration of fairness, explainability, and privacy.<n>The challenge of ensuring equitable healthcare delivery through AI is stressed, discussing methods to identify and mitigate bias in clinical predictive models.<n>The discussion advances in an analysis of privacy vulnerabilities in medical AI systems, from data leakage in deep learning models to sophisticated attacks against model explanations.
arXiv Detail & Related papers (2025-01-16T16:17:39Z) - Advancements in Machine Learning and Deep Learning for Early Detection and Management of Mental Health Disorder [1.1779072208948291]
This survey reviews the development of machine learning (ML) and deep learning (DL) methods for the early diagnosis and treatment of mental health issues.
It examines a range of applications, with a particular emphasis on behavioral assessments, genetic and biomarker analysis, and medical imaging for diagnosing diseases like depression, bipolar disorder, and schizophrenia.
Key findings highlight how ML and DL can improve diagnostic accuracy and treatment outcomes while addressing methodological inconsistencies, data integration challenges, and ethical concerns.
arXiv Detail & Related papers (2024-12-09T01:59:49Z) - Medchain: Bridging the Gap Between LLM Agents and Clinical Practice through Interactive Sequential Benchmarking [58.25862290294702]
We present MedChain, a dataset of 12,163 clinical cases that covers five key stages of clinical workflow.
We also propose MedChain-Agent, an AI system that integrates a feedback mechanism and a MCase-RAG module to learn from previous cases and adapt its responses.
arXiv Detail & Related papers (2024-12-02T15:25:02Z) - Framework for developing and evaluating ethical collaboration between expert and machine [4.304304889487245]
Precision medicine is a promising approach for accessible disease diagnosis and personalized intervention planning.
By leveraging artificial intelligence (AI), precision medicine tailors diagnosis and treatment solutions to individual patients.
However, the adoption of AI in medical applications faces significant challenges.
This paper proposes a framework to develop and ethically evaluate expert-guided multi-modal AI.
arXiv Detail & Related papers (2024-11-17T06:49:38Z) - Towards Next-Generation Medical Agent: How o1 is Reshaping Decision-Making in Medical Scenarios [46.729092855387165]
We study the choice of the backbone LLM for medical AI agents, which is the foundation for the agent's overall reasoning and action generation.<n>Our findings demonstrate o1's ability to enhance diagnostic accuracy and consistency, paving the way for smarter, more responsive AI tools.
arXiv Detail & Related papers (2024-11-16T18:19:53Z) - Artificial intelligence techniques in inherited retinal diseases: A review [19.107474958408847]
Inherited retinal diseases (IRDs) are a diverse group of genetic disorders that lead to progressive vision loss and are a major cause of blindness in working-age adults.
Recent advancements in artificial intelligence (AI) offer promising solutions to these challenges.
This review consolidates existing studies, identifies gaps, and provides an overview of AI's potential in diagnosing and managing IRDs.
arXiv Detail & Related papers (2024-10-10T03:14:51Z) - Speaking the Same Language: Leveraging LLMs in Standardizing Clinical Data for AI [0.0]
This study delves into the adoption of large language models to address specific challenges, specifically, the standardization of healthcare data.
Our results illustrate that employing large language models significantly diminishes the necessity for manual data curation.
The proposed methodology has the propensity to expedite the integration of AI in healthcare, ameliorate the quality of patient care, whilst minimizing the time and financial resources necessary for the preparation of data for AI.
arXiv Detail & Related papers (2024-08-16T20:51:21Z) - Development of a Large Language Model-based Multi-Agent Clinical Decision Support System for Korean Triage and Acuity Scale (KTAS)-Based Triage and Treatment Planning in Emergency Departments [0.0]
This study presents an LLM-driven CDSS to assist ED physicians and nurses in patient triage, treatment planning, and overall emergency care management.
The system comprises four AI agents emulating key ED roles: Triage Nurse, Emergency Physician, Pharmacist, and ED Coordinator.
It incorporates the Korean Triage and Acuity Scale (KTAS) for triage assessment and integrates with the RxNorm API for medication management.
arXiv Detail & Related papers (2024-08-14T13:03:41Z) - TrialBench: Multi-Modal Artificial Intelligence-Ready Clinical Trial Datasets [57.067409211231244]
This paper presents meticulously curated AIready datasets covering multi-modal data (e.g., drug molecule, disease code, text, categorical/numerical features) and 8 crucial prediction challenges in clinical trial design.
We provide basic validation methods for each task to ensure the datasets' usability and reliability.
We anticipate that the availability of such open-access datasets will catalyze the development of advanced AI approaches for clinical trial design.
arXiv Detail & Related papers (2024-06-30T09:13:10Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
neurodegenerative diseases (NDs) traditionally require extensive healthcare resources and human effort for medical diagnosis and monitoring.<n>As a crucial disease-related motor symptom, human gait can be exploited to characterize different NDs.<n>The current advances in artificial intelligence (AI) models enable automatic gait analysis for NDs identification and classification.
arXiv Detail & Related papers (2024-05-21T06:44:40Z) - A Foundational Framework and Methodology for Personalized Early and
Timely Diagnosis [84.6348989654916]
We propose the first foundational framework for early and timely diagnosis.
It builds on decision-theoretic approaches to outline the diagnosis process.
It integrates machine learning and statistical methodology for estimating the optimal personalized diagnostic path.
arXiv Detail & Related papers (2023-11-26T14:42:31Z) - From Classification to Clinical Insights: Towards Analyzing and Reasoning About Mobile and Behavioral Health Data With Large Language Models [21.427976533706737]
We take a novel approach that leverages large language models to synthesize clinically useful insights from multi-sensor data.
We develop chain of thought prompting methods that use LLMs to generate reasoning about how trends in data relate to conditions like depression and anxiety.
We find models like GPT-4 correctly reference numerical data 75% of the time, and clinician participants express strong interest in using this approach to interpret self-tracking data.
arXiv Detail & Related papers (2023-11-21T23:53:27Z) - OpenClinicalAI: An Open and Dynamic Model for Alzheimer's Disease
Diagnosis [11.775648630734949]
Alzheimer's disease (AD) cannot be reversed or cured, but timely diagnosis can significantly reduce the burden of treatment and care.
Current research on AD diagnosis models usually regards the diagnosis task as a typical classification task.
We propose OpenClinicalAI for direct AD diagnosis in complex and uncertain clinical settings.
arXiv Detail & Related papers (2023-07-03T12:35:03Z) - Large Language Models for Healthcare Data Augmentation: An Example on
Patient-Trial Matching [49.78442796596806]
We propose an innovative privacy-aware data augmentation approach for patient-trial matching (LLM-PTM)
Our experiments demonstrate a 7.32% average improvement in performance using the proposed LLM-PTM method, and the generalizability to new data is improved by 12.12%.
arXiv Detail & Related papers (2023-03-24T03:14:00Z) - The Medkit-Learn(ing) Environment: Medical Decision Modelling through
Simulation [81.72197368690031]
We present a new benchmarking suite designed specifically for medical sequential decision making.
The Medkit-Learn(ing) Environment is a publicly available Python package providing simple and easy access to high-fidelity synthetic medical data.
arXiv Detail & Related papers (2021-06-08T10:38:09Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
Clinical diagnosis, which aims to assign diagnosis codes for a patient based on the clinical note, plays an essential role in clinical decision-making.
We propose a novel framework to combine the inheritance-guided hierarchical assignment and co-occurrence graph propagation for clinical automatic diagnosis.
arXiv Detail & Related papers (2021-01-27T13:16:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.