論文の概要: Fairness in Multi-Agent AI: A Unified Framework for Ethical and Equitable Autonomous Systems
- arxiv url: http://arxiv.org/abs/2502.07254v1
- Date: Tue, 11 Feb 2025 04:42:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-12 14:10:22.453979
- Title: Fairness in Multi-Agent AI: A Unified Framework for Ethical and Equitable Autonomous Systems
- Title(参考訳): マルチエージェントAIの公正性:倫理的かつ等価な自律システムのための統一フレームワーク
- Authors: Rajesh Ranjan, Shailja Gupta, Surya Narayan Singh,
- Abstract要約: 本稿では,公正性をエージェント相互作用の動的,創発的特性として扱う新しい枠組みを提案する。
この枠組みは、公正な制約、バイアス軽減戦略、および自律的なエージェント行動と社会的価値を整合させるインセンティブメカニズムを統合する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Ensuring fairness in decentralized multi-agent systems presents significant challenges due to emergent biases, systemic inefficiencies, and conflicting agent incentives. This paper provides a comprehensive survey of fairness in multi-agent AI, introducing a novel framework where fairness is treated as a dynamic, emergent property of agent interactions. The framework integrates fairness constraints, bias mitigation strategies, and incentive mechanisms to align autonomous agent behaviors with societal values while balancing efficiency and robustness. Through empirical validation, we demonstrate that incorporating fairness constraints results in more equitable decision-making. This work bridges the gap between AI ethics and system design, offering a foundation for accountable, transparent, and socially responsible multi-agent AI systems.
- Abstract(参考訳): 分散マルチエージェントシステムにおける公平性を保証することは、創発的バイアス、システム的非効率性、および競合するエージェントインセンティブによる重大な課題を示す。
本稿では,マルチエージェントAIにおけるフェアネスの包括的調査を行い,エージェントインタラクションの動的・創発的特性としてフェアネスが扱われる新しい枠組みを提案する。
このフレームワークは公正性の制約、バイアス軽減戦略、およびインセンティブメカニズムを統合し、効率性と堅牢性のバランスを保ちながら、自律的なエージェントの振る舞いを社会的価値と整合させる。
実証的な検証を通じて、公正性の制約を組み込むことにより、より公平な意思決定が可能になることを示す。
この作業はAI倫理とシステム設計のギャップを埋め、説明責任、透明性、社会的責任を持つマルチエージェントAIシステムの基礎を提供する。
関連論文リスト
- Multi-Agent Risks from Advanced AI [90.74347101431474]
先進的なAIのマルチエージェントシステムは、新規で未発見のリスクを生じさせる。
エージェントのインセンティブに基づく3つの重要な障害モードと7つの重要なリスク要因を同定する。
各リスクのいくつかの重要な事例と、それらを緩和するための有望な方向性を強調します。
論文 参考訳(メタデータ) (2025-02-19T23:03:21Z) - Agentic AI: Autonomy, Accountability, and the Algorithmic Society [0.2209921757303168]
エージェント人工知能(AI)は、自律的に長期的な目標を追求し、意思決定を行い、複雑なマルチターンを実行することができる。
この指導的役割から積極的執行課題への移行は、法的、経済的、創造的な枠組みを確立した。
我々は,創造性と知的財産,法的・倫理的考察,競争効果の3つの分野における課題を探求する。
論文 参考訳(メタデータ) (2025-02-01T03:14:59Z) - Decentralized Governance of Autonomous AI Agents [0.0]
ETHOSは、ブロックチェーン、スマートコントラクト、分散自律組織(DAO)など、Web3テクノロジを活用する分散ガバナンス(DeGov)モデルである。
AIエージェントのグローバルレジストリを確立し、動的リスク分類、比例監視、自動コンプライアンス監視を可能にする。
合理性、倫理的根拠、ゴールアライメントの哲学的原則を統合することで、ETHOSは信頼、透明性、参加的ガバナンスを促進するための堅牢な研究アジェンダを作ることを目指している。
論文 参考訳(メタデータ) (2024-12-22T18:01:49Z) - Causal Responsibility Attribution for Human-AI Collaboration [62.474732677086855]
本稿では,人間のAIシステムにおける責任を体系的に評価するために,構造因果モデル(SCM)を用いた因果的枠組みを提案する。
2つのケーススタディは、多様な人間とAIのコラボレーションシナリオにおけるフレームワークの適応性を示している。
論文 参考訳(メタデータ) (2024-11-05T17:17:45Z) - Using Protected Attributes to Consider Fairness in Multi-Agent Systems [7.061167083587786]
マルチエージェントシステム(MAS)の公正性は、システムのルール、エージェントの振る舞い、それらの特性など、さまざまな要因に依存する。
機械学習に基づく意思決定におけるバイアスに対処するアルゴリズムフェアネスの研究から着想を得た。
我々は、アルゴリズムの公正度文献から、自己関心のあるエージェントが環境内で相互作用するマルチエージェント設定まで、公平度メトリクスを適応させる。
論文 参考訳(メタデータ) (2024-10-16T08:12:01Z) - Peer-induced Fairness: A Causal Approach for Algorithmic Fairness Auditing [0.0]
欧州連合の人工知能法は2024年8月1日に施行された。
リスクの高いAIアプリケーションは、厳格な透明性と公正な基準に従わなければならない。
本稿では,対実的公正性とピア比較戦略の強みを組み合わせた新しい枠組みを提案する。
論文 参考訳(メタデータ) (2024-08-05T15:35:34Z) - Attributing Responsibility in AI-Induced Incidents: A Computational Reflective Equilibrium Framework for Accountability [13.343937277604892]
AI(Artificial Intelligence)の広範な統合は、AI対応システムに関わるインシデントが発生した場合の責任と説明責任において、複雑な課題を導入している。
この研究は、すべての利害関係者に対して、一貫性があり倫理的に許容される責任帰属の枠組みを提案する。
論文 参考訳(メタデータ) (2024-04-25T18:11:03Z) - Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
責任AI(Responsible AI)は、企業文化の発展におけるバイアスに対処する重要な性質を強調している。
この論文は、バイアスを理解すること、バイアスを緩和すること、バイアスを説明することの3つの基本的な柱に基づいて構成されている。
オープンソースの原則に従って、アクセス可能なPythonパッケージとして、Bias On DemandとFairViewをリリースしました。
論文 参考訳(メタデータ) (2024-01-13T14:07:09Z) - Causal Fairness for Outcome Control [68.12191782657437]
本稿では,自動システムにおいて,公平かつ公平な結果変数を最適化することを目的とした,結果制御と呼ばれる特定の意思決定タスクについて検討する。
本稿では、まず因果レンズを通して利益の概念を分析し、特定の個人が肯定的な決定によってどれだけの利益を得られるかを明らかにする。
次に、保護された属性の影響を受けている可能性があることに留意し、これを分析するために使用できる因果的ツールを提案する。
論文 参考訳(メタデータ) (2023-06-08T09:31:18Z) - Social Diversity Reduces the Complexity and Cost of Fostering Fairness [63.70639083665108]
不完全な情報や公平性の柔軟な基準を前提とした干渉機構の効果について検討する。
多様性の役割を定量化し、情報収集の必要性を減らす方法を示す。
この結果から,多様性が変化し,公正性向上を目指す機関に新たなメカニズムが開放されることが示唆された。
論文 参考訳(メタデータ) (2022-11-18T21:58:35Z) - Causal Fairness Analysis [68.12191782657437]
意思決定設定における公平性の問題を理解し、モデル化し、潜在的に解決するためのフレームワークを導入します。
我々のアプローチの主な洞察は、観測データに存在する格差の定量化と、基礎となる、しばしば観測されていない、因果的なメカニズムの収集を結びつけることである。
本研究は,文献中の異なる基準間の関係を整理し,説明するための最初の体系的試みであるフェアネスマップにおいて,本研究の成果を左右するものである。
論文 参考訳(メタデータ) (2022-07-23T01:06:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。