Human-in-the-Loop Annotation for Image-Based Engagement Estimation: Assessing the Impact of Model Reliability on Annotation Accuracy
- URL: http://arxiv.org/abs/2502.07404v1
- Date: Tue, 11 Feb 2025 09:37:10 GMT
- Title: Human-in-the-Loop Annotation for Image-Based Engagement Estimation: Assessing the Impact of Model Reliability on Annotation Accuracy
- Authors: Sahana Yadnakudige Subramanya, Ko Watanabe, Andreas Dengel, Shoya Ishimaru,
- Abstract summary: This study integrates a high-performing image-based emotion model into a HITL annotation framework.
We investigate how varying model reliability and cognitive framing influence human trust, cognitive load, and annotation behavior.
By leveraging the strengths of both human oversight and automated systems, this study establishes a scalable HITL framework for emotion annotation.
- Score: 5.862907885873446
- License:
- Abstract: Human-in-the-loop (HITL) frameworks are increasingly recognized for their potential to improve annotation accuracy in emotion estimation systems by combining machine predictions with human expertise. This study focuses on integrating a high-performing image-based emotion model into a HITL annotation framework to evaluate the collaborative potential of human-machine interaction and identify the psychological and practical factors critical to successful collaboration. Specifically, we investigate how varying model reliability and cognitive framing influence human trust, cognitive load, and annotation behavior in HITL systems. We demonstrate that model reliability and psychological framing significantly impact annotators' trust, engagement, and consistency, offering insights into optimizing HITL frameworks. Through three experimental scenarios with 29 participants--baseline model reliability (S1), fabricated errors (S2), and cognitive bias introduced by negative framing (S3)--we analyzed behavioral and qualitative data. Reliable predictions in S1 yielded high trust and annotation consistency, while unreliable outputs in S2 led to increased critical evaluations but also heightened frustration and response variability. Negative framing in S3 revealed how cognitive bias influenced participants to perceive the model as more relatable and accurate, despite misinformation regarding its reliability. These findings highlight the importance of both reliable machine outputs and psychological factors in shaping effective human-machine collaboration. By leveraging the strengths of both human oversight and automated systems, this study establishes a scalable HITL framework for emotion annotation and lays the foundation for broader applications in adaptive learning and human-computer interaction.
Related papers
- KRAIL: A Knowledge-Driven Framework for Base Human Reliability Analysis Integrating IDHEAS and Large Language Models [2.7378790256389047]
This paper introduces a novel two-stage framework for knowledge-driven reliability analysis, integrating IDHEAS and LLMs (KRAIL)
Inspired by the success of large language models (LLMs) in natural language processing, this paper introduces a novel two-stage framework for knowledge-driven reliability analysis.
arXiv Detail & Related papers (2024-12-20T06:21:34Z) - ConSiDERS-The-Human Evaluation Framework: Rethinking Human Evaluation for Generative Large Language Models [53.00812898384698]
We argue that human evaluation of generative large language models (LLMs) should be a multidisciplinary undertaking.
We highlight how cognitive biases can conflate fluent information and truthfulness, and how cognitive uncertainty affects the reliability of rating scores such as Likert.
We propose the ConSiDERS-The-Human evaluation framework consisting of 6 pillars -- Consistency, Scoring Criteria, Differentiating, User Experience, Responsible, and Scalability.
arXiv Detail & Related papers (2024-05-28T22:45:28Z) - Decoding Susceptibility: Modeling Misbelief to Misinformation Through a Computational Approach [61.04606493712002]
Susceptibility to misinformation describes the degree of belief in unverifiable claims that is not observable.
Existing susceptibility studies heavily rely on self-reported beliefs.
We propose a computational approach to model users' latent susceptibility levels.
arXiv Detail & Related papers (2023-11-16T07:22:56Z) - Why not both? Complementing explanations with uncertainty, and the role
of self-confidence in Human-AI collaboration [12.47276164048813]
We conduct an empirical study to identify how uncertainty estimates and model explanations affect users' reliance, understanding, and trust towards a model.
We also discuss how the latter may distort the outcome of an analysis based on agreement and switching percentages.
arXiv Detail & Related papers (2023-04-27T12:24:33Z) - Exploring the Trade-off between Plausibility, Change Intensity and
Adversarial Power in Counterfactual Explanations using Multi-objective
Optimization [73.89239820192894]
We argue that automated counterfactual generation should regard several aspects of the produced adversarial instances.
We present a novel framework for the generation of counterfactual examples.
arXiv Detail & Related papers (2022-05-20T15:02:53Z) - Empirical Estimates on Hand Manipulation are Recoverable: A Step Towards
Individualized and Explainable Robotic Support in Everyday Activities [80.37857025201036]
Key challenge for robotic systems is to figure out the behavior of another agent.
Processing correct inferences is especially challenging when (confounding) factors are not controlled experimentally.
We propose equipping robots with the necessary tools to conduct observational studies on people.
arXiv Detail & Related papers (2022-01-27T22:15:56Z) - Enhancing Model Robustness and Fairness with Causality: A Regularization
Approach [15.981724441808147]
Recent work has raised concerns on the risk of spurious correlations and unintended biases in machine learning models.
We propose a simple and intuitive regularization approach to integrate causal knowledge during model training.
We build a predictive model that relies more on causal features and less on non-causal features.
arXiv Detail & Related papers (2021-10-03T02:49:33Z) - Towards Unbiased Visual Emotion Recognition via Causal Intervention [63.74095927462]
We propose a novel Emotion Recognition Network (IERN) to alleviate the negative effects brought by the dataset bias.
A series of designed tests validate the effectiveness of IERN, and experiments on three emotion benchmarks demonstrate that IERN outperforms other state-of-the-art approaches.
arXiv Detail & Related papers (2021-07-26T10:40:59Z) - Expertise and confidence explain how social influence evolves along
intellective tasks [10.525352489242396]
We study interpersonal influence in small groups of individuals who collectively execute a sequence of intellective tasks.
We report empirical evidence on theories of transactive memory systems, social comparison, and confidences on the origins of social influence.
We propose a cognitive dynamical model inspired by these theories to describe the process by which individuals adjust interpersonal influences over time.
arXiv Detail & Related papers (2020-11-13T23:48:25Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILE is a novel feature importance estimation method.
We show significant improvements over state-of-the-art approaches, both in terms of fidelity and robustness.
arXiv Detail & Related papers (2020-09-30T05:29:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.