Large Language Models as Proxies for Theories of Human Linguistic Cognition
- URL: http://arxiv.org/abs/2502.07687v1
- Date: Tue, 11 Feb 2025 16:38:16 GMT
- Title: Large Language Models as Proxies for Theories of Human Linguistic Cognition
- Authors: Imry Ziv, Nur Lan, Emmanuel Chemla, Roni Katzir,
- Abstract summary: We consider the possible role of current large language models (LLMs) in the study of human linguistic cognition.
We focus on the use of such models as proxies for theories of cognition that are relatively linguistically-neutral in their representations and learning.
- Score: 2.624902795082451
- License:
- Abstract: We consider the possible role of current large language models (LLMs) in the study of human linguistic cognition. We focus on the use of such models as proxies for theories of cognition that are relatively linguistically-neutral in their representations and learning but differ from current LLMs in key ways. We illustrate this potential use of LLMs as proxies for theories of cognition in the context of two kinds of questions: (a) whether the target theory accounts for the acquisition of a given pattern from a given corpus; and (b) whether the target theory makes a given typologically-attested pattern easier to acquire than another, typologically-unattested pattern. For each of the two questions we show, building on recent literature, how current LLMs can potentially be of help, but we note that at present this help is quite limited.
Related papers
- LogiDynamics: Unraveling the Dynamics of Logical Inference in Large Language Model Reasoning [49.58786377307728]
This paper adopts an exploratory approach by introducing a controlled evaluation environment for analogical reasoning.
We analyze the comparative dynamics of inductive, abductive, and deductive inference pipelines.
We investigate advanced paradigms such as hypothesis selection, verification, and refinement, revealing their potential to scale up logical inference.
arXiv Detail & Related papers (2025-02-16T15:54:53Z) - Tokens, the oft-overlooked appetizer: Large language models, the distributional hypothesis, and meaning [31.632816425798108]
Tokenization is a necessary component within the current architecture of many language models.
We show that tokenization pretraining can be a backdoor for bias and other unwanted content.
We relay evidence that the tokenization algorithm's objective function impacts the large language model's cognition.
arXiv Detail & Related papers (2024-12-14T18:18:52Z) - Large Language Models as Neurolinguistic Subjects: Identifying Internal Representations for Form and Meaning [49.60849499134362]
This study investigates the linguistic understanding of Large Language Models (LLMs) regarding signifier (form) and signified (meaning)
Traditional psycholinguistic evaluations often reflect statistical biases that may misrepresent LLMs' true linguistic capabilities.
We introduce a neurolinguistic approach, utilizing a novel method that combines minimal pair and diagnostic probing to analyze activation patterns across model layers.
arXiv Detail & Related papers (2024-11-12T04:16:44Z) - Does Reasoning Emerge? Examining the Probabilities of Causation in Large Language Models [6.922021128239465]
Recent advances in AI have been driven by the capabilities of large language models (LLMs)
This paper introduces a framework that is both theoretical and practical, aimed at assessing how effectively LLMs are able to replicate real-world reasoning mechanisms.
arXiv Detail & Related papers (2024-08-15T15:19:11Z) - Black Big Boxes: Do Language Models Hide a Theory of Adjective Order? [5.395055685742631]
In English and other languages, multiple adjectives in a complex noun phrase show intricate ordering patterns that have been a target of much linguistic theory.
We review existing hypotheses designed to explain Adjective Order Preferences (AOPs) in humans and develop a setup to study AOPs in language models.
We find that all models' predictions are much closer to human AOPs than predictions generated by factors identified in theoretical linguistics.
arXiv Detail & Related papers (2024-07-02T10:29:09Z) - What Do Language Models Learn in Context? The Structured Task Hypothesis [89.65045443150889]
Large language models (LLMs) learn a novel task from in-context examples presented in a demonstration, termed in-context learning (ICL)
One popular hypothesis explains ICL by task selection.
Another popular hypothesis is that ICL is a form of meta-learning, i.e., the models learn a learning algorithm at pre-training time and apply it to the demonstration.
arXiv Detail & Related papers (2024-06-06T16:15:34Z) - FAC$^2$E: Better Understanding Large Language Model Capabilities by Dissociating Language and Cognition [56.76951887823882]
Large language models (LLMs) are primarily evaluated by overall performance on various text understanding and generation tasks.
We present FAC$2$E, a framework for Fine-grAined and Cognition-grounded LLMs' Capability Evaluation.
arXiv Detail & Related papers (2024-02-29T21:05:37Z) - Why Can Large Language Models Generate Correct Chain-of-Thoughts? [10.888196404348093]
We introduce a two-level hierarchical graphical model tailored for natural language generation.
We establish a compelling geometrical convergence rate that gauges the likelihood of an LLM-generated chain of thoughts.
arXiv Detail & Related papers (2023-10-20T15:09:46Z) - The Quo Vadis of the Relationship between Language and Large Language
Models [3.10770247120758]
Large Language Models (LLMs) have come to encourage the adoption of LLMs as scientific models of language.
We identify the most important theoretical and empirical risks brought about by the adoption of scientific models that lack transparency.
We conclude that, at their current stage of development, LLMs hardly offer any explanations for language.
arXiv Detail & Related papers (2023-10-17T10:54:24Z) - Large Language Models are In-Context Semantic Reasoners rather than
Symbolic Reasoners [75.85554779782048]
Large Language Models (LLMs) have excited the natural language and machine learning community over recent years.
Despite of numerous successful applications, the underlying mechanism of such in-context capabilities still remains unclear.
In this work, we hypothesize that the learned textitsemantics of language tokens do the most heavy lifting during the reasoning process.
arXiv Detail & Related papers (2023-05-24T07:33:34Z) - Shortcut Learning of Large Language Models in Natural Language
Understanding [119.45683008451698]
Large language models (LLMs) have achieved state-of-the-art performance on a series of natural language understanding tasks.
They might rely on dataset bias and artifacts as shortcuts for prediction.
This has significantly affected their generalizability and adversarial robustness.
arXiv Detail & Related papers (2022-08-25T03:51:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.