Curvature Tuning: Provable Training-free Model Steering From a Single Parameter
- URL: http://arxiv.org/abs/2502.07783v1
- Date: Tue, 11 Feb 2025 18:59:57 GMT
- Title: Curvature Tuning: Provable Training-free Model Steering From a Single Parameter
- Authors: Leyang Hu, Randall Balestriero,
- Abstract summary: We show how a single parameter can be used to modulate the curvature of a model's decision boundary.
This makes CT both more efficient and interpretable than conventional fine-tuning methods.
We empirically validate its effectiveness in improving generalization and robustness of pretrained models.
- Score: 13.412573082645096
- License:
- Abstract: The scaling of model size and data size has reshaped the paradigm of AI. As a result, the common protocol to leverage the latest models is to steer them towards a specific downstream task of interest through {\em fine-tuning}. Despite its importance, the main methods for fine-tuning remain limited to full or low-rank adapters--containing countless hyper-parameters and lacking interpretability. In this paper, we take a step back and demonstrate how novel and explainable post-training steering solutions can be derived theoretically from {\em spline operators}, a rich mathematical framing of Deep Networks that was recently developed. Our method--coined \textbf{Curvature Tuning (CT)}--has a single parameter that provably modulates the curvature of the model's decision boundary henceforth allowing training-free steering. This makes CT both more efficient and interpretable than conventional fine-tuning methods. We empirically validate its effectiveness in improving generalization and robustness of pretrained models. For example, CT improves out-of-distribution transfer performances of ResNet-18/50 by 2.57\%/1.74\% across seventeen downstream datasets, and improves RobustBench robust accuracy by 11.76\%/348.44\%. Additionally, we apply CT to ReLU-based Swin-T/S, improving their generalization on nine downstream datasets by 2.43\%/3.33\%. Our code is available at \href{https://github.com/Leon-Leyang/curvature-tuning}{https://github.com/Leon-Leyang/curvature-tuning}.
Related papers
- PACE: Marrying generalization in PArameter-efficient fine-tuning with Consistency rEgularization [35.922096876707975]
PACE is a generalization of PArameter-efficient fine-tuning with Consistency rEgularization.
It implicitly regularizes gradients for enhanced generalization, but also implicitly aligns the fine-tuned and pre-trained models to retain knowledge.
It also improves LoRA in text classification (GLUE) and mathematical reasoning.
arXiv Detail & Related papers (2024-09-25T17:56:00Z) - Test-time adaptation for geospatial point cloud semantic segmentation with distinct domain shifts [6.80671668491958]
Test-time adaptation (TTA) allows direct adaptation of a pre-trained model to unlabeled data during inference stage without access to source data or additional training.
We propose three domain shift paradigms: photogrammetric to airborne LiDAR, airborne to mobile LiDAR, and synthetic to mobile laser scanning.
Experimental results show our method improves classification accuracy by up to 20% mIoU, outperforming other methods.
arXiv Detail & Related papers (2024-07-08T15:40:28Z) - Towards Robust and Efficient Cloud-Edge Elastic Model Adaptation via Selective Entropy Distillation [56.79064699832383]
We establish a Cloud-Edge Elastic Model Adaptation (CEMA) paradigm in which the edge models only need to perform forward propagation.
In our CEMA, to reduce the communication burden, we devise two criteria to exclude unnecessary samples from uploading to the cloud.
arXiv Detail & Related papers (2024-02-27T08:47:19Z) - Trainable Projected Gradient Method for Robust Fine-tuning [36.470333094917436]
We propose Trainable Projected Gradient Method (TPGM) to automatically learn the constraint imposed for each layer for a fine-grained fine-tuning regularization.
This is motivated by formulating fine-tuning as a bi-level constrained optimization problem.
We show that TPGM outperforms existing fine-tuning methods in OOD performance while matching the best in-distribution (ID) performance.
arXiv Detail & Related papers (2023-03-19T17:30:44Z) - Online Hyperparameter Optimization for Class-Incremental Learning [99.70569355681174]
Class-incremental learning (CIL) aims to train a classification model while the number of classes increases phase-by-phase.
An inherent challenge of CIL is the stability-plasticity tradeoff, i.e., CIL models should keep stable to retain old knowledge and keep plastic to absorb new knowledge.
We propose an online learning method that can adaptively optimize the tradeoff without knowing the setting as a priori.
arXiv Detail & Related papers (2023-01-11T17:58:51Z) - Prompt Tuning for Parameter-efficient Medical Image Segmentation [79.09285179181225]
We propose and investigate several contributions to achieve a parameter-efficient but effective adaptation for semantic segmentation on two medical imaging datasets.
We pre-train this architecture with a dedicated dense self-supervision scheme based on assignments to online generated prototypes.
We demonstrate that the resulting neural network model is able to attenuate the gap between fully fine-tuned and parameter-efficiently adapted models.
arXiv Detail & Related papers (2022-11-16T21:55:05Z) - Scaling & Shifting Your Features: A New Baseline for Efficient Model
Tuning [126.84770886628833]
Existing finetuning methods either tune all parameters of the pretrained model (full finetuning) or only tune the last linear layer (linear probing)
We propose a new parameter-efficient finetuning method termed as SSF, representing that researchers only need to Scale and Shift the deep Features extracted by a pre-trained model to catch up with the performance full finetuning.
arXiv Detail & Related papers (2022-10-17T08:14:49Z) - DSEE: Dually Sparsity-embedded Efficient Tuning of Pre-trained Language
Models [152.29364079385635]
As pre-trained models grow bigger, the fine-tuning process can be time-consuming and computationally expensive.
We propose a framework for resource- and parameter-efficient fine-tuning by leveraging the sparsity prior in both weight updates and the final model weights.
Our proposed framework, dubbed Dually Sparsity-Embedded Efficient Tuning (DSEE), aims to achieve two key objectives: (i) parameter efficient fine-tuning and (ii) resource-efficient inference.
arXiv Detail & Related papers (2021-10-30T03:29:47Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
We show that a host of variations can be covered in a unified framework that we propose.
We prove the convergence of this novel scheme and rigorously evaluate its empirical performance on ResNet, LSTM, and Transformer.
arXiv Detail & Related papers (2020-06-10T08:22:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.