SNAP: Sequential Non-Ancestor Pruning for Targeted Causal Effect Estimation With an Unknown Graph
- URL: http://arxiv.org/abs/2502.07857v1
- Date: Tue, 11 Feb 2025 16:20:57 GMT
- Title: SNAP: Sequential Non-Ancestor Pruning for Targeted Causal Effect Estimation With an Unknown Graph
- Authors: Mátyás Schubert, Tom Claassen, Sara Magliacane,
- Abstract summary: We focus on identifying causal effects between target variables in a computationally and statistically efficient way.
We show that definite non-ancestors of the targets are unnecessary to learn causal relations between the targets and to identify efficient adjustments sets.
Our results on synthetic and real data show that both approaches substantially reduce the number of independence tests and the computation time without compromising the quality of causal effect estimations.
- Score: 5.828668695854935
- License:
- Abstract: Causal discovery can be computationally demanding for large numbers of variables. If we only wish to estimate the causal effects on a small subset of target variables, we might not need to learn the causal graph for all variables, but only a small subgraph that includes the targets and their adjustment sets. In this paper, we focus on identifying causal effects between target variables in a computationally and statistically efficient way. This task combines causal discovery and effect estimation, aligning the discovery objective with the effects to be estimated. We show that definite non-ancestors of the targets are unnecessary to learn causal relations between the targets and to identify efficient adjustments sets. We sequentially identify and prune these definite non-ancestors with our Sequential Non-Ancestor Pruning (SNAP) framework, which can be used either as a preprocessing step to standard causal discovery methods, or as a standalone sound and complete causal discovery algorithm. Our results on synthetic and real data show that both approaches substantially reduce the number of independence tests and the computation time without compromising the quality of causal effect estimations.
Related papers
- Semiparametric conformal prediction [79.6147286161434]
Risk-sensitive applications require well-calibrated prediction sets over multiple, potentially correlated target variables.
We treat the scores as random vectors and aim to construct the prediction set accounting for their joint correlation structure.
We report desired coverage and competitive efficiency on a range of real-world regression problems.
arXiv Detail & Related papers (2024-11-04T14:29:02Z) - Targeted Cause Discovery with Data-Driven Learning [66.86881771339145]
We propose a novel machine learning approach for inferring causal variables of a target variable from observations.
We employ a neural network trained to identify causality through supervised learning on simulated data.
Empirical results demonstrate the effectiveness of our method in identifying causal relationships within large-scale gene regulatory networks.
arXiv Detail & Related papers (2024-08-29T02:21:11Z) - Causal Discovery of Linear Non-Gaussian Causal Models with Unobserved Confounding [1.6932009464531739]
We consider linear non-Gaussian structural equation models that involve latent confounding.
In this setting, the causal structure is identifiable, but, in general, it is not possible to identify the specific causal effects.
arXiv Detail & Related papers (2024-08-09T07:24:12Z) - Structural restrictions in local causal discovery: identifying direct causes of a target variable [0.9208007322096533]
Learning a set of direct causes of a target variable from an observational joint distribution is a fundamental problem in science.
Here, we are only interested in identifying the direct causes of one target variable, not the full DAG.
This allows us to relax the identifiability assumptions and develop possibly faster and more robust algorithms.
arXiv Detail & Related papers (2023-07-29T18:31:35Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
We study causal representation learning, the task of inferring latent causal variables and their causal relations from mixtures of the variables.
Our goal is to identify both the ground truth latents and their causal graph up to a set of ambiguities which we show to be irresolvable from interventional data.
arXiv Detail & Related papers (2023-06-01T10:51:58Z) - On Learning Necessary and Sufficient Causal Graphs [29.339455706346193]
In practice, only a small subset of variables in the graph are relevant to the outcomes of interest.
We propose learning a class of necessary and sufficient causal graphs (NSCG) that exclusively comprises causally relevant variables for an outcome of interest.
We develop a necessary and sufficient causal structural learning (NSCSL) algorithm, by establishing theoretical properties and relationships between probabilities of causation and natural causal effects of features.
arXiv Detail & Related papers (2023-01-29T08:19:15Z) - Subset verification and search algorithms for causal DAGs [13.108039226223793]
We study the problem of identifying the smallest set of interventions required to learn the causal relationships between a subset of edges (target edges)
We prove several interesting structural properties of interventional causal graphs that we believe have applications beyond the subset verification/search problems studied here.
arXiv Detail & Related papers (2023-01-09T06:25:44Z) - Independence Testing-Based Approach to Causal Discovery under
Measurement Error and Linear Non-Gaussian Models [9.016435298155827]
Causal discovery aims to recover causal structures generating observational data.
We consider a specific formulation of the problem, where the unobserved target variables follow a linear non-Gaussian acyclic model.
We propose the Transformed Independent Noise condition, which checks for independence between a specific linear transformation of some measured variables and certain other measured variables.
arXiv Detail & Related papers (2022-10-20T05:10:37Z) - Active Bayesian Causal Inference [72.70593653185078]
We propose Active Bayesian Causal Inference (ABCI), a fully-Bayesian active learning framework for integrated causal discovery and reasoning.
ABCI jointly infers a posterior over causal models and queries of interest.
We show that our approach is more data-efficient than several baselines that only focus on learning the full causal graph.
arXiv Detail & Related papers (2022-06-04T22:38:57Z) - Partial Identification with Noisy Covariates: A Robust Optimization
Approach [94.10051154390237]
Causal inference from observational datasets often relies on measuring and adjusting for covariates.
We show that this robust optimization approach can extend a wide range of causal adjustment methods to perform partial identification.
Across synthetic and real datasets, we find that this approach provides ATE bounds with a higher coverage probability than existing methods.
arXiv Detail & Related papers (2022-02-22T04:24:26Z) - Efficient Causal Inference from Combined Observational and
Interventional Data through Causal Reductions [68.6505592770171]
Unobserved confounding is one of the main challenges when estimating causal effects.
We propose a novel causal reduction method that replaces an arbitrary number of possibly high-dimensional latent confounders.
We propose a learning algorithm to estimate the parameterized reduced model jointly from observational and interventional data.
arXiv Detail & Related papers (2021-03-08T14:29:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.