論文の概要: TANTE: Time-Adaptive Operator Learning via Neural Taylor Expansion
- arxiv url: http://arxiv.org/abs/2502.08574v2
- Date: Fri, 16 May 2025 16:27:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-19 14:36:12.181515
- Title: TANTE: Time-Adaptive Operator Learning via Neural Taylor Expansion
- Title(参考訳): TANTE: ニューラルネットワークによる時間適応型演算子学習
- Authors: Zhikai Wu, Sifan Wang, Shiyang Zhang, Sizhuang He, Min Zhu, Anran Jiao, Lu Lu, David van Dijk,
- Abstract要約: 適応的なステップサイズで連続時間予測を生成する演算子学習フレームワークを提案する。
TANTEはテイラー展開を現在の状態に実行することで将来の状態を予測し、ニューラルネットワークは高次の時間微分と局所収束半径の両方を学ぶ。
これにより、ソリューションのローカルな振る舞いに基づいて、モデルがロールアウトを動的に調整できる。
- 参考スコア(独自算出の注目度): 5.282722051530654
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Operator learning for time-dependent partial differential equations (PDEs) has seen rapid progress in recent years, enabling efficient approximation of complex spatiotemporal dynamics. However, most existing methods rely on fixed time step sizes during rollout, which limits their ability to adapt to varying temporal complexity and often leads to error accumulation. To address this gap, we propose the Time-Adaptive Transformer with Neural Taylor Expansion (TANTE), a novel operator-learning framework that produces continuous-time predictions with adaptive step sizes. TANTE predicts future states by performing a Taylor expansion at the current state, where neural networks learn both the higher-order temporal derivatives and the local radius of convergence. This allows the model to dynamically adjust its rollout based on the local behavior of the solution, thereby reducing cumulative error and improving computational efficiency. We demonstrate the effectiveness of TANTE across a wide range of PDE benchmarks, achieving superior accuracy and adaptability compared to fixed-step baselines, delivering accuracy gains of 10-50 % and speed-ups of 30-80 % at inference.
- Abstract(参考訳): 時間依存偏微分方程式(PDE)の演算子学習は近年急速に進歩し、複雑な時空間力学の効率的な近似を可能にしている。
しかし、既存のほとんどのメソッドはロールアウト中の固定時間ステップサイズに依存しており、時間的な複雑さに適応する能力が制限され、しばしばエラーの蓄積につながる。
このギャップに対処するために、適応的なステップサイズで連続時間予測を生成する演算子学習フレームワークであるNeural Taylor Expansion (TANTE) を用いた時適応変換器を提案する。
TANTEはテイラー展開を現在の状態に実行することで将来の状態を予測し、ニューラルネットワークは高次の時間微分と局所収束半径の両方を学ぶ。
これにより、解の局所挙動に基づいてロールアウトを動的に調整し、累積誤差を低減し、計算効率を向上させることができる。
本研究では,様々なPDEベンチマークにおけるTANTEの有効性を実証し,固定ステップベースラインよりも精度と適応性を向上し,精度が10~50%向上し,速度が30~80%向上した。
関連論文リスト
- Efficient Transformed Gaussian Process State-Space Models for Non-Stationary High-Dimensional Dynamical Systems [49.819436680336786]
本研究では,高次元非定常力学系のスケーラブルかつ柔軟なモデリングのための効率的な変換ガウス過程状態空間モデル(ETGPSSM)を提案する。
具体的には、ETGPSSMは、単一の共有GPと入力依存の正規化フローを統合し、複雑な非定常遷移ダイナミクスを捉える前に、表現的な暗黙のプロセスを生成する。
ETGPSSMは、計算効率と精度の観点から、既存のGPSSMとニューラルネットワークベースのSSMより優れています。
論文 参考訳(メタデータ) (2025-03-24T03:19:45Z) - A Local Information Aggregation based Multi-Agent Reinforcement Learning for Robot Swarm Dynamic Task Allocation [4.144893164317513]
分散化された部分観測可能なマルコフ決定プロセス(Dec_POMDP)を用いた新しいフレームワークを提案する。
我々の方法論の核心は、局所情報集約多元決定政策勾配(LIA_MADDPG)アルゴリズムである。
実験により,LIAモジュールは様々なCTDEベースのMARL法にシームレスに統合可能であることが示された。
論文 参考訳(メタデータ) (2024-11-29T07:53:05Z) - Adaptive variational low-rank dynamics for open quantum systems [0.0]
低エントロピーシステムの効率的なシミュレーションのための新しいモデル非依存手法を提案する。
本研究は,本手法の汎用性と効率性を強調し,多種多様なシステムに適用可能であることを示す。
論文 参考訳(メタデータ) (2023-12-21T08:57:41Z) - Towards Hyperparameter-Agnostic DNN Training via Dynamical System
Insights [4.513581513983453]
本稿では,ディープニューラルネットワーク(DNN),ECCO-DNNに特化した一階最適化手法を提案する。
本手法は, 最適変数軌道を動的システムとしてモデル化し, 軌道形状に基づいてステップサイズを適応的に選択する離散化アルゴリズムを開発する。
論文 参考訳(メタデータ) (2023-10-21T03:45:13Z) - Active Learning of Discrete-Time Dynamics for Uncertainty-Aware Model Predictive Control [46.81433026280051]
本稿では,非線形ロボットシステムの力学を積極的にモデル化する自己教師型学習手法を提案する。
我々のアプローチは、目に見えない飛行条件に一貫して適応することで、高いレジリエンスと一般化能力を示す。
論文 参考訳(メタデータ) (2022-10-23T00:45:05Z) - On Fast Simulation of Dynamical System with Neural Vector Enhanced
Numerical Solver [59.13397937903832]
ニューラルベクトル(NeurVec)と呼ばれる深層学習に基づく補正手法を提案する。
NeurVecは、統合エラーを補償し、シミュレーションでより大きなタイムステップサイズを可能にする。
様々な複雑な力学系ベンチマークの実験により、NeurVecは顕著な一般化能力を示すことが示された。
論文 参考訳(メタデータ) (2022-08-07T09:02:18Z) - Learning effective dynamics from data-driven stochastic systems [2.4578723416255754]
この研究は、低速力学系に対する効果的な力学の研究に費やされている。
遅い多様体を学習するために,Auto-SDEと呼ばれるニューラルネットワークを含む新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-05-09T09:56:58Z) - Gradient-Based Trajectory Optimization With Learned Dynamics [80.41791191022139]
データからシステムの微分可能なダイナミクスモデルを学習するために、機械学習技術を使用します。
ニューラルネットワークは、大規模な時間的地平線に対して、非常に非線形な振る舞いを正確にモデル化できることが示される。
ハードウェア実験において、学習したモデルがSpotとRadio- controlled (RC)の両方の複雑な力学を表現できることを実証した。
論文 参考訳(メタデータ) (2022-04-09T22:07:34Z) - Neural Stochastic Dual Dynamic Programming [99.80617899593526]
我々は、問題インスタンスを断片的線形値関数にマッピングすることを学ぶトレーニング可能なニューラルモデルを導入する。
$nu$-SDDPは、ソリューションの品質を犠牲にすることなく、問題解決コストを大幅に削減できる。
論文 参考訳(メタデータ) (2021-12-01T22:55:23Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
マルチエージェントシステムにおける学習に有効なモデルベース強化学習アルゴリズムを提案する。
我々の理論的な貢献は、MFCのモデルベース強化学習における最初の一般的な後悔の限界である。
コア最適化問題の実用的なパラメトリゼーションを提供する。
論文 参考訳(メタデータ) (2021-07-08T18:01:02Z) - Reinforcement Learning with Fast Stabilization in Linear Dynamical
Systems [91.43582419264763]
未知の安定化線形力学系におけるモデルベース強化学習(RL)について検討する。
本研究では,環境を効果的に探索することで,基盤システムの高速安定化を証明できるアルゴリズムを提案する。
提案アルゴリズムはエージェント環境相互作用の時間ステップで$tildemathcalO(sqrtT)$ regretを達成した。
論文 参考訳(メタデータ) (2020-07-23T23:06:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。