論文の概要: Mathematical Data Science
- arxiv url: http://arxiv.org/abs/2502.08620v1
- Date: Wed, 12 Feb 2025 18:15:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-13 13:44:45.576930
- Title: Mathematical Data Science
- Title(参考訳): 数理データサイエンス
- Authors: Michael R. Douglas, Kyu-Hwan Lee,
- Abstract要約: 我々は、これを「数学的データサイエンス」と呼ぶ方法について議論する。
このパラダイムでは、データセットを作成し、機械学習の実験と解釈を行うことにより、個別ではなく数学的対象を集合的に研究する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Can machine learning help discover new mathematical structures? In this article we discuss an approach to doing this which one can call "mathematical data science". In this paradigm, one studies mathematical objects collectively rather than individually, by creating datasets and doing machine learning experiments and interpretations. After an overview, we present two case studies: murmurations in number theory and loadings of partitions related to Kronecker coefficients in representation theory and combinatorics.
- Abstract(参考訳): 機械学習は新しい数学的構造を発見するのに役立つか?
本稿では、これを「数学的データサイエンス」と呼ぶ方法について議論する。
このパラダイムでは、データセットを作成し、機械学習の実験と解釈を行うことにより、個別ではなく数学的対象を集合的に研究する。
概説の後、2つのケーススタディとして、数論における濁りと、表現論とコンビネータ論におけるクロネッカー係数に関連する分割の載荷について述べる。
関連論文リスト
- Data for Mathematical Copilots: Better Ways of Presenting Proofs for Machine Learning [85.635988711588]
我々は,大規模言語モデルの能力向上には,数学的データセットの設計におけるパラダイムシフトが必要であると論じる。
1949年にG. P'olyaが導入した「動機付き証明」の概念は、より良い証明学習信号を提供するデータセットの青写真として機能する。
数学データセットに特化して設計されたアンケートでは、クリエーターにデータセットを含めるよう促します。
論文 参考訳(メタデータ) (2024-12-19T18:55:17Z) - Review and Prospect of Algebraic Research in Equivalent Framework between Statistical Mechanics and Machine Learning Theory [0.0]
この論文は、統計力学と場の量子論の両方において代数研究の先駆者であるアラキ・フジヒロ教授の記憶に捧げられている。
論文 参考訳(メタデータ) (2024-05-31T11:04:13Z) - Machine learning and information theory concepts towards an AI
Mathematician [77.63761356203105]
人工知能の現在の最先端技術は、特に言語習得の点で印象的だが、数学的推論の点ではあまり重要ではない。
このエッセイは、現在のディープラーニングが主にシステム1の能力で成功するという考えに基づいている。
興味深い数学的ステートメントを構成するものについて質問するために、情報理論的な姿勢を取る。
論文 参考訳(メタデータ) (2024-03-07T15:12:06Z) - OntoMath${}^{\mathbf{PRO}}$ 2.0 Ontology: Updates of the Formal Model [68.8204255655161]
主な関心は、Open Linked Dataクラウドにおける数学的ステートメントを表現するための形式モデルの開発である。
提案モデルは、自然言語の数学的テキストから数学的事実を抽出し、これらの事実をLinked Open Dataとして表現するアプリケーションを対象としている。
このモデルは OntoMath$mathrmPRO$ ontology of professional mathematics の新バージョンの開発に使用される。
論文 参考訳(メタデータ) (2023-03-17T20:29:17Z) - How Do Transformers Learn Topic Structure: Towards a Mechanistic
Understanding [56.222097640468306]
我々は、トランスフォーマーが「意味構造」を学ぶ方法の機械的理解を提供する
数学的解析とウィキペディアデータの実験を組み合わせることで、埋め込み層と自己保持層がトピック構造をエンコードしていることを示す。
論文 参考訳(メタデータ) (2023-03-07T21:42:17Z) - Tree-Based Representation and Generation of Natural and Mathematical
Language [77.34726150561087]
科学コミュニケーションと教育シナリオにおける数学的言語は重要であるが、比較的研究されている。
数学言語に関する最近の研究は、スタンドアローンな数学的表現や、事前訓練された自然言語モデルにおける数学的推論に焦点をあてている。
テキストと数学を共同で表現・生成するために,既存の言語モデルに対する一連の修正を提案する。
論文 参考訳(メタデータ) (2023-02-15T22:38:34Z) - A Survey of Deep Learning for Mathematical Reasoning [71.88150173381153]
我々は過去10年間の数学的推論とディープラーニングの交差点における重要なタスク、データセット、方法についてレビューする。
大規模ニューラルネットワークモデルの最近の進歩は、新しいベンチマークと、数学的推論にディープラーニングを使用する機会を開放している。
論文 参考訳(メタデータ) (2022-12-20T18:46:16Z) - Self-Supervised Pretraining of Graph Neural Network for the Retrieval of
Related Mathematical Expressions in Scientific Articles [8.942112181408156]
本稿では,機械学習に基づく数学的表現の検索手法を提案する。
埋め込み学習と自己教師型学習を組み合わせた教師なし表現学習タスクを設計する。
arXiv.orgで発行された90,000以上の出版物から、9900万以上の数学的表現を持つ巨大なデータセットを収集します。
論文 参考訳(メタデータ) (2022-08-22T12:11:30Z) - Machine-Learning Mathematical Structures [0.0]
本稿では,様々な問題に対するアキュラティシーの比較研究を行う。
このパラダイムは、予想の定式化、より効率的な計算方法の発見、数学における特定の構造階層の探索に有用である。
論文 参考訳(メタデータ) (2021-01-15T22:48:19Z) - Noisy Deductive Reasoning: How Humans Construct Math, and How Math
Constructs Universes [0.5874142059884521]
本稿では,数学が基本的な過程である数学的推論の計算モデルを提案する。
この枠組みが数学的実践のいくつかの側面について説得力のある説明を与えることを示す。
論文 参考訳(メタデータ) (2020-10-28T19:43:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。