Can a Single Model Master Both Multi-turn Conversations and Tool Use? CoALM: A Unified Conversational Agentic Language Model
- URL: http://arxiv.org/abs/2502.08820v3
- Date: Wed, 19 Feb 2025 04:28:49 GMT
- Title: Can a Single Model Master Both Multi-turn Conversations and Tool Use? CoALM: A Unified Conversational Agentic Language Model
- Authors: Emre Can Acikgoz, Jeremiah Greer, Akul Datta, Ze Yang, William Zeng, Oussama Elachqar, Emmanouil Koukoumidis, Dilek Hakkani-Tür, Gokhan Tur,
- Abstract summary: We introduce CoALM (Conversational Agentic Language Model), a unified approach that integrates both conversational and agentic capabilities.<n>Using CoALM-IT, we train three models CoALM 8B, CoALM 70B, and CoALM 405B, which outperform top domain-specific models.
- Score: 8.604654904400027
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Large Language Models (LLMs) with API-calling capabilities enabled building effective Language Agents (LA), while also revolutionizing the conventional task-oriented dialogue (TOD) paradigm. However, current approaches face a critical dilemma: TOD systems are often trained on a limited set of target APIs, requiring new data to maintain their quality when interfacing with new services, while LAs are not trained to maintain user intent over multi-turn conversations. Because both robust multi-turn management and advanced function calling are crucial for effective conversational agents, we evaluate these skills on three popular benchmarks: MultiWOZ 2.4 (TOD), BFCL V3 (LA), and API-Bank (LA), and our analyses reveal that specialized approaches excel in one domain but underperform in the other. To bridge this chasm, we introduce CoALM (Conversational Agentic Language Model), a unified approach that integrates both conversational and agentic capabilities. We created CoALM-IT, a carefully constructed multi-task dataset that interleave multi-turn ReAct reasoning with complex API usage. Using CoALM-IT, we train three models CoALM 8B, CoALM 70B, and CoALM 405B, which outperform top domain-specific models, including GPT-4o, across all three benchmarks. This demonstrates the feasibility of a single model approach for both TOD and LA, setting a new standard for conversational agents.
Related papers
- AgentMaster: A Multi-Agent Conversational Framework Using A2A and MCP Protocols for Multimodal Information Retrieval and Analysis [0.0]
We present a pilot study of AgentMaster, a novel modular multi-protocol MAS framework with self-implemented A2A and MCP.<n>The system supports natural language interaction without prior technical expertise and responds to multimodal queries.<n>Overall, our proposed framework contributes to the potential capabilities of domain-specific, cooperative, and scalable conversational AI powered by MAS.
arXiv Detail & Related papers (2025-07-08T03:34:26Z) - Unifying Multimodal Large Language Model Capabilities and Modalities via Model Merging [103.98582374569789]
Model merging aims to combine multiple expert models into a single model, thereby reducing storage and serving costs.<n>Previous studies have primarily focused on merging visual classification models or Large Language Models (LLMs) for code and math tasks.<n>We introduce the model merging benchmark for MLLMs, which includes multiple tasks such as VQA, Geometry, Chart, OCR, and Grounding, providing both LoRA and full fine-tuning models.
arXiv Detail & Related papers (2025-05-26T12:23:14Z) - The Unreasonable Effectiveness of Model Merging for Cross-Lingual Transfer in LLMs [54.59207567677249]
Large language models (LLMs) still struggle across tasks outside of high-resource languages.<n>In this work, we investigate cross-lingual transfer to lower-resource languages where task-specific post-training data is scarce.
arXiv Detail & Related papers (2025-05-23T20:28:31Z) - MergeBench: A Benchmark for Merging Domain-Specialized LLMs [19.49737955489798]
MergeBench is an evaluation suite designed to assess model merging at scale.<n>It builds on state-of-the-art open-source language models, including Llama and Gemma families at 2B to 9B scales.<n>We assess eight representative merging methods across multi-task performance, forgetting and runtime efficiency.
arXiv Detail & Related papers (2025-05-16T04:02:55Z) - Towards Anthropomorphic Conversational AI Part I: A Practical Framework [49.62013440962072]
We introduce a multi- module framework designed to replicate the key aspects of human intelligence involved in conversations.
In the second stage of our approach, these conversational data, after filtering and labeling, can serve as training and testing data for reinforcement learning.
arXiv Detail & Related papers (2025-02-28T03:18:39Z) - NVLM: Open Frontier-Class Multimodal LLMs [64.00053046838225]
We introduce NVLM 1.0, a family of frontier-class multimodal large language models (LLMs) that achieve state-of-the-art results on vision-language tasks.
We propose a novel architecture that enhances both training efficiency and multimodal reasoning capabilities.
We develop production-grade multimodality for the NVLM-1.0 models, enabling them to excel in vision-language tasks.
arXiv Detail & Related papers (2024-09-17T17:59:06Z) - BattleAgentBench: A Benchmark for Evaluating Cooperation and Competition Capabilities of Language Models in Multi-Agent Systems [15.159418172629701]
Large Language Models (LLMs) are becoming increasingly powerful and capable of handling complex tasks.
Compared to single agents, multi-agent systems have higher requirements for the collaboration capabilities of language models.
We propose a benchmark, called BattleAgentBench, which defines seven sub-stages of three varying difficulty levels.
arXiv Detail & Related papers (2024-08-28T17:43:55Z) - Granite-Function Calling Model: Introducing Function Calling Abilities via Multi-task Learning of Granular Tasks [35.97890508648945]
We introduce the-20B-FUNCTIONCALLING model under an Apache 2.0 license.
The model is trained using a multi-task training approach on seven fundamental tasks.
We show that-20B-FUNCTIONCALLING has better generalizability on multiple tasks in seven different evaluation datasets.
arXiv Detail & Related papers (2024-06-27T17:47:26Z) - ChatterBox: Multi-round Multimodal Referring and Grounding [108.9673313949746]
We present a new benchmark and an efficient vision-language model for this purpose.
The proposed model, named ChatterBox, utilizes a two-branch architecture to collaboratively handle vision and language tasks.
Experiments show that ChatterBox outperforms existing models in MRG both quantitatively and qualitatively.
arXiv Detail & Related papers (2024-01-24T09:02:00Z) - MAgIC: Investigation of Large Language Model Powered Multi-Agent in Cognition, Adaptability, Rationality and Collaboration [98.18244218156492]
Large Language Models (LLMs) have significantly advanced natural language processing.<n>As their applications expand into multi-agent environments, there arises a need for a comprehensive evaluation framework.<n>This work introduces a novel competition-based benchmark framework to assess LLMs within multi-agent settings.
arXiv Detail & Related papers (2023-11-14T21:46:27Z) - Multitask Multimodal Prompted Training for Interactive Embodied Task
Completion [48.69347134411864]
Embodied MultiModal Agent (EMMA) is a unified encoder-decoder model that reasons over images and trajectories.
By unifying all tasks as text generation, EMMA learns a language of actions which facilitates transfer across tasks.
arXiv Detail & Related papers (2023-11-07T15:27:52Z) - Towards Robust Multi-Modal Reasoning via Model Selection [7.6621866737827045]
LLM serves as the "brain" of the agent, orchestrating multiple tools for collaborative multi-step task solving.
We propose the $textitM3$ framework as a plug-in with negligible runtime overhead at test-time.
Our experiments reveal that our framework enables dynamic model selection, considering both user inputs and subtask dependencies.
arXiv Detail & Related papers (2023-10-12T16:06:18Z) - Recommender AI Agent: Integrating Large Language Models for Interactive
Recommendations [53.76682562935373]
We introduce an efficient framework called textbfInteRecAgent, which employs LLMs as the brain and recommender models as tools.
InteRecAgent achieves satisfying performance as a conversational recommender system, outperforming general-purpose LLMs.
arXiv Detail & Related papers (2023-08-31T07:36:44Z) - LAMM: Language-Assisted Multi-Modal Instruction-Tuning Dataset,
Framework, and Benchmark [81.42376626294812]
We present Language-Assisted Multi-Modal instruction tuning dataset, framework, and benchmark.
Our aim is to establish LAMM as a growing ecosystem for training and evaluating MLLMs.
We present a comprehensive dataset and benchmark, which cover a wide range of vision tasks for 2D and 3D vision.
arXiv Detail & Related papers (2023-06-11T14:01:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.