PLayer-FL: A Principled Approach to Personalized Layer-wise Cross-Silo Federated Learning
- URL: http://arxiv.org/abs/2502.08829v1
- Date: Wed, 12 Feb 2025 22:35:29 GMT
- Title: PLayer-FL: A Principled Approach to Personalized Layer-wise Cross-Silo Federated Learning
- Authors: Ahmed Elhussein, Gamze Gürsoy,
- Abstract summary: Non-identically distributed data is a major challenge in Federated Learning (FL)
We introduce Principled Layer-wise-FL (PLayer-FL), which uses a novel federation sensitivity metric to identify layers that benefit from federation.
We show that PLayer-FL outperforms existing FL algorithms on a range of tasks, also achieving more uniform performance improvements across clients.
- Score: 0.0
- License:
- Abstract: Non-identically distributed data is a major challenge in Federated Learning (FL). Personalized FL tackles this by balancing local model adaptation with global model consistency. One variant, partial FL, leverages the observation that early layers learn more transferable features by federating only early layers. However, current partial FL approaches use predetermined, architecture-specific rules to select layers, limiting their applicability. We introduce Principled Layer-wise-FL (PLayer-FL), which uses a novel federation sensitivity metric to identify layers that benefit from federation. This metric, inspired by model pruning, quantifies each layer's contribution to cross-client generalization after the first training epoch, identifying a transition point in the network where the benefits of federation diminish. We first demonstrate that our federation sensitivity metric shows strong correlation with established generalization measures across diverse architectures. Next, we show that PLayer-FL outperforms existing FL algorithms on a range of tasks, also achieving more uniform performance improvements across clients.
Related papers
- Can We Theoretically Quantify the Impacts of Local Updates on the Generalization Performance of Federated Learning? [50.03434441234569]
Federated Learning (FL) has gained significant popularity due to its effectiveness in training machine learning models across diverse sites without requiring direct data sharing.
While various algorithms have shown that FL with local updates is a communication-efficient distributed learning framework, the generalization performance of FL with local updates has received comparatively less attention.
arXiv Detail & Related papers (2024-09-05T19:00:18Z) - Sequential Federated Learning in Hierarchical Architecture on Non-IID Datasets [25.010661914466354]
In a real federated learning (FL) system, communication overhead for passing model parameters between the clients and the parameter (PS) is often a bottleneck.
We propose sequential FL (SFL) HFL for the first time, which removes the central PS and enables the model to be completed only through passing data between two adjacent ESs for each server.
arXiv Detail & Related papers (2024-08-19T07:43:35Z) - Understanding the Role of Layer Normalization in Label-Skewed Federated
Learning [15.19762600396105]
Layer normalization (LN) is a widely adopted deep learning technique especially in the era of foundation models.
In this work, we reveal the profound connection between layer normalization and the label shift problem in federated learning.
Our results verify that FN is an essential ingredient inside LN to significantly improve the convergence of FL while remaining robust to learning rate choices.
arXiv Detail & Related papers (2023-08-18T13:57:04Z) - GIFD: A Generative Gradient Inversion Method with Feature Domain
Optimization [52.55628139825667]
Federated Learning (FL) has emerged as a promising distributed machine learning framework to preserve clients' privacy.
Recent studies find that an attacker can invert the shared gradients and recover sensitive data against an FL system by leveraging pre-trained generative adversarial networks (GAN) as prior knowledge.
We propose textbfGradient textbfInversion over textbfFeature textbfDomains (GIFD), which disassembles the GAN model and searches the feature domains of the intermediate layers.
arXiv Detail & Related papers (2023-08-09T04:34:21Z) - Automated Federated Learning in Mobile Edge Networks -- Fast Adaptation
and Convergence [83.58839320635956]
Federated Learning (FL) can be used in mobile edge networks to train machine learning models in a distributed manner.
Recent FL has been interpreted within a Model-Agnostic Meta-Learning (MAML) framework, which brings FL significant advantages in fast adaptation and convergence over heterogeneous datasets.
This paper addresses how much benefit MAML brings to FL and how to maximize such benefit over mobile edge networks.
arXiv Detail & Related papers (2023-03-23T02:42:10Z) - Hierarchical Personalized Federated Learning Over Massive Mobile Edge
Computing Networks [95.39148209543175]
We propose hierarchical PFL (HPFL), an algorithm for deploying PFL over massive MEC networks.
HPFL combines the objectives of training loss minimization and round latency minimization while jointly determining the optimal bandwidth allocation.
arXiv Detail & Related papers (2023-03-19T06:00:05Z) - FedLP: Layer-wise Pruning Mechanism for Communication-Computation
Efficient Federated Learning [15.665720478360557]
Federated learning (FL) has prevailed as an efficient and privacy-preserved scheme for distributed learning.
We formulate an explicit FL pruning framework, FedLP (Federated Layer-wise Pruning), which is model-agnostic and universal for different types of deep learning models.
arXiv Detail & Related papers (2023-03-11T09:57:00Z) - Disentangled Federated Learning for Tackling Attributes Skew via
Invariant Aggregation and Diversity Transferring [104.19414150171472]
Attributes skews the current federated learning (FL) frameworks from consistent optimization directions among the clients.
We propose disentangled federated learning (DFL) to disentangle the domain-specific and cross-invariant attributes into two complementary branches.
Experiments verify that DFL facilitates FL with higher performance, better interpretability, and faster convergence rate, compared with SOTA FL methods.
arXiv Detail & Related papers (2022-06-14T13:12:12Z) - Sparse Federated Learning with Hierarchical Personalized Models [24.763028713043468]
Federated learning (FL) can achieve privacy-safe and reliable collaborative training without collecting users' private data.
We propose a personalized FL algorithm using a hierarchical proximal mapping based on the moreau envelop, named sparse federated learning with hierarchical personalized models (sFedHP)
A continuously differentiable approximated L1-norm is also used as the sparse constraint to reduce the communication cost.
arXiv Detail & Related papers (2022-03-25T09:06:42Z) - Efficient Split-Mix Federated Learning for On-Demand and In-Situ
Customization [107.72786199113183]
Federated learning (FL) provides a distributed learning framework for multiple participants to collaborate learning without sharing raw data.
In this paper, we propose a novel Split-Mix FL strategy for heterogeneous participants that, once training is done, provides in-situ customization of model sizes and robustness.
arXiv Detail & Related papers (2022-03-18T04:58:34Z) - FedSemi: An Adaptive Federated Semi-Supervised Learning Framework [23.90642104477983]
Federated learning (FL) has emerged as an effective technique to co-training machine learning models without actually sharing data and leaking privacy.
Most existing FL methods focus on the supervised setting and ignore the utilization of unlabeled data.
We propose FedSemi, a novel, adaptive, and general framework, which firstly introduces the consistency regularization into FL using a teacher-student model.
arXiv Detail & Related papers (2020-12-06T15:46:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.