Smoothing ADMM for Non-convex and Non-smooth Hierarchical Federated Learning
- URL: http://arxiv.org/abs/2503.08869v1
- Date: Tue, 11 Mar 2025 20:21:56 GMT
- Title: Smoothing ADMM for Non-convex and Non-smooth Hierarchical Federated Learning
- Authors: Reza Mirzaeifard, Stefan Werner,
- Abstract summary: This paper presents a hierarchical learning (FL) framework that extends the alternating direction method multipliers (ADMM) with smoothing techniques.<n>Unlike traditional hierarchical FL methods, our approach supports asynchronous updates and multiple updates per iteration.
- Score: 3.6742141597860907
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a hierarchical federated learning (FL) framework that extends the alternating direction method of multipliers (ADMM) with smoothing techniques, tailored for non-convex and non-smooth objectives. Unlike traditional hierarchical FL methods, our approach supports asynchronous updates and multiple updates per iteration, enhancing adaptability to heterogeneous data and system settings. Additionally, we introduce a flexible mechanism to leverage diverse regularization functions at each layer, allowing customization to the specific prior information within each cluster and accommodating (possibly) non-smooth penalty objectives. Depending on the learning goal, the framework supports both consensus and personalization: the total variation norm can be used to enforce consensus across layers, while non-convex penalties such as minimax concave penalty (MCP) or smoothly clipped absolute deviation (SCAD) enable personalized learning. Experimental results demonstrate the superior convergence rates and accuracy of our method compared to conventional approaches, underscoring its robustness and versatility for a wide range of FL scenarios.
Related papers
- Decentralized Nonconvex Composite Federated Learning with Gradient Tracking and Momentum [78.27945336558987]
Decentralized server (DFL) eliminates reliance on client-client architecture.
Non-smooth regularization is often incorporated into machine learning tasks.
We propose a novel novel DNCFL algorithm to solve these problems.
arXiv Detail & Related papers (2025-04-17T08:32:25Z) - PLayer-FL: A Principled Approach to Personalized Layer-wise Cross-Silo Federated Learning [0.0]
Non-identically distributed data is a major challenge in Federated Learning (FL)
We introduce Principled Layer-wise-FL (PLayer-FL), which uses a novel federation sensitivity metric to identify layers that benefit from federation.
We show that PLayer-FL outperforms existing FL algorithms on a range of tasks, also achieving more uniform performance improvements across clients.
arXiv Detail & Related papers (2025-02-12T22:35:29Z) - pMixFed: Efficient Personalized Federated Learning through Adaptive Layer-Wise Mixup [18.409463838775558]
pMixFed is a dynamic, layer-wise PFL approach that integrates mixup between shared global and personalized local models.<n>Our method introduces an adaptive strategy for partitioning between personalized and shared layers, a gradual transition of personalization degree to enhance local client adaptation, improved generalization across clients, and a novel aggregation mechanism to mitigate catastrophic forgetting.
arXiv Detail & Related papers (2025-01-19T10:15:36Z) - On ADMM in Heterogeneous Federated Learning: Personalization, Robustness, and Fairness [16.595935469099306]
We propose FLAME, an optimization framework by utilizing the alternating direction method of multipliers (ADMM) to train personalized and global models.
Our theoretical analysis establishes the global convergence and two kinds of convergence rates for FLAME under mild assumptions.
Our experimental findings show that FLAME outperforms state-of-the-art methods in convergence and accuracy, and it achieves higher test accuracy under various attacks.
arXiv Detail & Related papers (2024-07-23T11:35:42Z) - Stragglers-Aware Low-Latency Synchronous Federated Learning via Layer-Wise Model Updates [71.81037644563217]
Synchronous federated learning (FL) is a popular paradigm for collaborative edge learning.
As some of the devices may have limited computational resources and varying availability, FL latency is highly sensitive to stragglers.
We propose straggler-aware layer-wise federated learning (SALF) that leverages the optimization procedure of NNs via backpropagation to update the global model in a layer-wise fashion.
arXiv Detail & Related papers (2024-03-27T09:14:36Z) - Unleashing Network Potentials for Semantic Scene Completion [50.95486458217653]
This paper proposes a novel SSC framework - Adrial Modality Modulation Network (AMMNet)
AMMNet introduces two core modules: a cross-modal modulation enabling the interdependence of gradient flows between modalities, and a customized adversarial training scheme leveraging dynamic gradient competition.
Extensive experimental results demonstrate that AMMNet outperforms state-of-the-art SSC methods by a large margin.
arXiv Detail & Related papers (2024-03-12T11:48:49Z) - Ensemble Kalman Filtering Meets Gaussian Process SSM for Non-Mean-Field and Online Inference [47.460898983429374]
We introduce an ensemble Kalman filter (EnKF) into the non-mean-field (NMF) variational inference framework to approximate the posterior distribution of the latent states.
This novel marriage between EnKF and GPSSM not only eliminates the need for extensive parameterization in learning variational distributions, but also enables an interpretable, closed-form approximation of the evidence lower bound (ELBO)
We demonstrate that the resulting EnKF-aided online algorithm embodies a principled objective function by ensuring data-fitting accuracy while incorporating model regularizations to mitigate overfitting.
arXiv Detail & Related papers (2023-12-10T15:22:30Z) - Federated Deep Equilibrium Learning: Harnessing Compact Global Representations to Enhance Personalization [23.340237814344377]
Federated Learning (FL) has emerged as a groundbreaking distributed learning paradigm enabling clients to train a global model collaboratively without exchanging data.
We introduce FeDEQ, a novel FL framework that incorporates deep equilibrium learning and consensus optimization to harness compact global data representations for efficient personalization.
We show that FeDEQ matches the performance of state-of-the-art personalized FL methods, while significantly reducing communication size by up to 4 times and memory footprint by 1.5 times during training.
arXiv Detail & Related papers (2023-09-27T13:48:12Z) - AQUILA: Communication Efficient Federated Learning with Adaptive
Quantization in Device Selection Strategy [27.443439653087662]
This paper introduces AQUILA (adaptive quantization in device selection strategy), a novel adaptive framework devised to handle these issues.
AQUILA integrates a sophisticated device selection method that prioritizes the quality and usefulness of device updates.
Our experiments demonstrate that AQUILA significantly decreases communication costs compared to existing methods.
arXiv Detail & Related papers (2023-08-01T03:41:47Z) - Disentangled Federated Learning for Tackling Attributes Skew via
Invariant Aggregation and Diversity Transferring [104.19414150171472]
Attributes skews the current federated learning (FL) frameworks from consistent optimization directions among the clients.
We propose disentangled federated learning (DFL) to disentangle the domain-specific and cross-invariant attributes into two complementary branches.
Experiments verify that DFL facilitates FL with higher performance, better interpretability, and faster convergence rate, compared with SOTA FL methods.
arXiv Detail & Related papers (2022-06-14T13:12:12Z) - Revisiting GANs by Best-Response Constraint: Perspective, Methodology,
and Application [49.66088514485446]
Best-Response Constraint (BRC) is a general learning framework to explicitly formulate the potential dependency of the generator on the discriminator.
We show that even with different motivations and formulations, a variety of existing GANs ALL can be uniformly improved by our flexible BRC methodology.
arXiv Detail & Related papers (2022-05-20T12:42:41Z) - Efficient Split-Mix Federated Learning for On-Demand and In-Situ
Customization [107.72786199113183]
Federated learning (FL) provides a distributed learning framework for multiple participants to collaborate learning without sharing raw data.
In this paper, we propose a novel Split-Mix FL strategy for heterogeneous participants that, once training is done, provides in-situ customization of model sizes and robustness.
arXiv Detail & Related papers (2022-03-18T04:58:34Z) - Gradient Masked Averaging for Federated Learning [24.687254139644736]
Federated learning allows a large number of clients with heterogeneous data to coordinate learning of a unified global model.
Standard FL algorithms involve averaging of model parameters or gradient updates to approximate the global model at the server.
We propose a gradient masked averaging approach for FL as an alternative to the standard averaging of client updates.
arXiv Detail & Related papers (2022-01-28T08:42:43Z) - FedSemi: An Adaptive Federated Semi-Supervised Learning Framework [23.90642104477983]
Federated learning (FL) has emerged as an effective technique to co-training machine learning models without actually sharing data and leaking privacy.
Most existing FL methods focus on the supervised setting and ignore the utilization of unlabeled data.
We propose FedSemi, a novel, adaptive, and general framework, which firstly introduces the consistency regularization into FL using a teacher-student model.
arXiv Detail & Related papers (2020-12-06T15:46:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.