Thinking beyond the anthropomorphic paradigm benefits LLM research
- URL: http://arxiv.org/abs/2502.09192v1
- Date: Thu, 13 Feb 2025 11:32:09 GMT
- Title: Thinking beyond the anthropomorphic paradigm benefits LLM research
- Authors: Lujain Ibrahim, Myra Cheng,
- Abstract summary: We analyze hundreds of thousands of computer science research articles from the past decade.<n>We present empirical evidence of the prevalence and growth of anthropomorphic terminology in research on large language models (LLMs)<n>We argue these conceptualizations may be limiting, and that challenging them opens up new pathways for understanding and improving LLMs beyond human analogies.
- Score: 1.7392902719515677
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anthropomorphism, or the attribution of human traits to technology, is an automatic and unconscious response that occurs even in those with advanced technical expertise. In this position paper, we analyze hundreds of thousands of computer science research articles from the past decade and present empirical evidence of the prevalence and growth of anthropomorphic terminology in research on large language models (LLMs). This terminology reflects deeper anthropomorphic conceptualizations which shape how we think about and conduct LLM research. We argue these conceptualizations may be limiting, and that challenging them opens up new pathways for understanding and improving LLMs beyond human analogies. To illustrate this, we identify and analyze five core anthropomorphic assumptions shaping prominent methodologies across the LLM development lifecycle, from the assumption that models must use natural language for reasoning tasks to the assumption that model capabilities should be evaluated through human-centric benchmarks. For each assumption, we demonstrate how non-anthropomorphic alternatives can open new directions for research and development.
Related papers
- How LLMs Comprehend Temporal Meaning in Narratives: A Case Study in Cognitive Evaluation of LLMs [13.822169295436177]
We investigate how large language models (LLMs) process the temporal meaning of linguistic aspect in narratives that were previously used in human studies.<n>Our findings show that LLMs over-rely on prototypicality, produce inconsistent aspectual judgments, and struggle with causal reasoning derived from aspect.<n>These results suggest that LLMs process aspect fundamentally differently from humans and lack robust narrative understanding.
arXiv Detail & Related papers (2025-07-18T18:28:35Z) - Using AI to replicate human experimental results: a motion study [0.11838866556981258]
This paper explores the potential of large language models (LLMs) as reliable analytical tools in linguistic research.<n>It focuses on the emergence of affective meanings in temporal expressions involving manner-of-motion verbs.
arXiv Detail & Related papers (2025-07-14T14:47:01Z) - Scaling and Beyond: Advancing Spatial Reasoning in MLLMs Requires New Recipes [84.1059652774853]
Multimodal Large Language Models (MLLMs) have demonstrated impressive performance in general vision-language tasks.<n>Recent studies have exposed critical limitations in their spatial reasoning capabilities.<n>This deficiency in spatial reasoning significantly constrains MLLMs' ability to interact effectively with the physical world.
arXiv Detail & Related papers (2025-04-21T11:48:39Z) - Multimodal LLM Augmented Reasoning for Interpretable Visual Perception Analysis [19.032828729570458]
We use established principles and explanations from psychology and cognitive science related to complexity in human visual perception.
Our study aims to benchmark MLLMs across various explainability principles relevant to visual perception.
arXiv Detail & Related papers (2025-04-16T22:14:27Z) - LogiDynamics: Unraveling the Dynamics of Logical Inference in Large Language Model Reasoning [49.58786377307728]
This paper adopts an exploratory approach by introducing a controlled evaluation environment for analogical reasoning.
We analyze the comparative dynamics of inductive, abductive, and deductive inference pipelines.
We investigate advanced paradigms such as hypothesis selection, verification, and refinement, revealing their potential to scale up logical inference.
arXiv Detail & Related papers (2025-02-16T15:54:53Z) - Human-Centric Foundation Models: Perception, Generation and Agentic Modeling [79.97999901785772]
Human-centric Foundation Models unify diverse human-centric tasks into a single framework.<n>We present a comprehensive overview of HcFMs by proposing a taxonomy that categorizes current approaches into four groups.<n>This survey aims to serve as a roadmap for researchers and practitioners working towards more robust, versatile, and intelligent digital human and embodiments modeling.
arXiv Detail & Related papers (2025-02-12T16:38:40Z) - Multi-turn Evaluation of Anthropomorphic Behaviours in Large Language Models [26.333097337393685]
The tendency of users to anthropomorphise large language models (LLMs) is of growing interest to AI developers, researchers, and policy-makers.<n>Here, we present a novel method for empirically evaluating anthropomorphic LLM behaviours in realistic and varied settings.<n>First, we develop a multi-turn evaluation of 14 anthropomorphic behaviours.<n>Second, we present a scalable, automated approach by employing simulations of user interactions.<n>Third, we conduct an interactive, large-scale human subject study (N=1101) to validate that the model behaviours we measure predict real users' anthropomorphic perceptions.
arXiv Detail & Related papers (2025-02-10T22:09:57Z) - Human-like conceptual representations emerge from language prediction [72.5875173689788]
We investigated the emergence of human-like conceptual representations within large language models (LLMs)<n>We found that LLMs were able to infer concepts from definitional descriptions and construct representation spaces that converge towards a shared, context-independent structure.<n>Our work supports the view that LLMs serve as valuable tools for understanding complex human cognition and paves the way for better alignment between artificial and human intelligence.
arXiv Detail & Related papers (2025-01-21T23:54:17Z) - Theoretical and Methodological Framework for Studying Texts Produced by Large Language Models [0.0]
This paper addresses the conceptual, methodological and technical challenges in studying large language models (LLMs)
It builds on a theoretical framework that distinguishes between the LLM as a substrate and the entities the model simulates.
arXiv Detail & Related papers (2024-08-29T17:34:10Z) - Human-like object concept representations emerge naturally in multimodal large language models [24.003766123531545]
We combined behavioral and neuroimaging analysis methods to uncover how the object concept representations in Large Language Models correlate with those of humans.
The resulting 66-dimensional embeddings were found to be highly stable and predictive, and exhibited semantic clustering akin to human mental representations.
This study advances our understanding of machine intelligence and informs the development of more human-like artificial cognitive systems.
arXiv Detail & Related papers (2024-07-01T08:17:19Z) - LLMs as Models for Analogical Reasoning [14.412456982731467]
Analogical reasoning is fundamental to human cognition and learning.
Recent studies have shown that large language models can sometimes match humans in analogical reasoning tasks.
arXiv Detail & Related papers (2024-06-19T20:07:37Z) - Bias Amplification in Language Model Evolution: An Iterated Learning Perspective [27.63295869974611]
We draw parallels between the behavior of Large Language Models (LLMs) and the evolution of human culture.
Our approach involves leveraging Iterated Learning (IL), a Bayesian framework that elucidates how subtle biases are magnified during human cultural evolution.
This paper outlines key characteristics of agents' behavior in the Bayesian-IL framework, including predictions that are supported by experimental verification.
arXiv Detail & Related papers (2024-04-04T02:01:25Z) - Large language models as linguistic simulators and cognitive models in human research [0.0]
The rise of large language models (LLMs) that generate human-like text has sparked debates over their potential to replace human participants in behavioral and cognitive research.
We critically evaluate this replacement perspective to appraise the fundamental utility of language models in psychology and social science.
This perspective reframes the role of language models in behavioral and cognitive science, serving as linguistic simulators and cognitive models that shed light on the similarities and differences between machine intelligence and human cognition and thoughts.
arXiv Detail & Related papers (2024-02-06T23:28:23Z) - Rethinking Interpretability in the Era of Large Language Models [76.1947554386879]
Large language models (LLMs) have demonstrated remarkable capabilities across a wide array of tasks.
The capability to explain in natural language allows LLMs to expand the scale and complexity of patterns that can be given to a human.
These new capabilities raise new challenges, such as hallucinated explanations and immense computational costs.
arXiv Detail & Related papers (2024-01-30T17:38:54Z) - A Survey of Reasoning with Foundation Models [235.7288855108172]
Reasoning plays a pivotal role in various real-world settings such as negotiation, medical diagnosis, and criminal investigation.
We introduce seminal foundation models proposed or adaptable for reasoning.
We then delve into the potential future directions behind the emergence of reasoning abilities within foundation models.
arXiv Detail & Related papers (2023-12-17T15:16:13Z) - Interpreting Pretrained Language Models via Concept Bottlenecks [55.47515772358389]
Pretrained language models (PLMs) have made significant strides in various natural language processing tasks.
The lack of interpretability due to their black-box'' nature poses challenges for responsible implementation.
We propose a novel approach to interpreting PLMs by employing high-level, meaningful concepts that are easily understandable for humans.
arXiv Detail & Related papers (2023-11-08T20:41:18Z) - The Quo Vadis of the Relationship between Language and Large Language
Models [3.10770247120758]
Large Language Models (LLMs) have come to encourage the adoption of LLMs as scientific models of language.
We identify the most important theoretical and empirical risks brought about by the adoption of scientific models that lack transparency.
We conclude that, at their current stage of development, LLMs hardly offer any explanations for language.
arXiv Detail & Related papers (2023-10-17T10:54:24Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
Large language models (LLMs) have demonstrated the ability to overcome various limitations of formal Knowledge Representation (KR) systems.
LLMs excel most in abductive reasoning, followed by deductive reasoning, while they are least effective at inductive reasoning.
We study single-task training, multi-task training, and "chain-of-thought" knowledge distillation fine-tuning technique to assess the performance of model.
arXiv Detail & Related papers (2023-10-02T01:00:50Z) - Framework-Based Qualitative Analysis of Free Responses of Large Language
Models: Algorithmic Fidelity [1.7947441434255664]
Large-scale generative Language Models (LLMs) can simulate free responses to interview questions like those traditionally analyzed using qualitative research methods.
Here we consider whether artificial "silicon participants" generated by LLMs may be productively studied using qualitative methods.
arXiv Detail & Related papers (2023-09-06T15:00:44Z) - Position: Key Claims in LLM Research Have a Long Tail of Footnotes [81.14898541318198]
We argue that we do not have a working definition of Large Language Models (LLMs)
We critically examine five common claims regarding their properties.
We conclude with suggestions for future research directions and their framing.
arXiv Detail & Related papers (2023-08-14T13:00:53Z) - Revisiting the Reliability of Psychological Scales on Large Language Models [62.57981196992073]
This study aims to determine the reliability of applying personality assessments to Large Language Models.
Analysis of 2,500 settings per model, including GPT-3.5, GPT-4, Gemini-Pro, and LLaMA-3.1, reveals that various LLMs show consistency in responses to the Big Five Inventory.
arXiv Detail & Related papers (2023-05-31T15:03:28Z) - Large Language Models are In-Context Semantic Reasoners rather than
Symbolic Reasoners [75.85554779782048]
Large Language Models (LLMs) have excited the natural language and machine learning community over recent years.
Despite of numerous successful applications, the underlying mechanism of such in-context capabilities still remains unclear.
In this work, we hypothesize that the learned textitsemantics of language tokens do the most heavy lifting during the reasoning process.
arXiv Detail & Related papers (2023-05-24T07:33:34Z) - Machine Psychology [54.287802134327485]
We argue that a fruitful direction for research is engaging large language models in behavioral experiments inspired by psychology.
We highlight theoretical perspectives, experimental paradigms, and computational analysis techniques that this approach brings to the table.
It paves the way for a "machine psychology" for generative artificial intelligence (AI) that goes beyond performance benchmarks.
arXiv Detail & Related papers (2023-03-24T13:24:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.