論文の概要: Data and Decision Traceability for SDA TAP Lab's Prototype Battle Management System
- arxiv url: http://arxiv.org/abs/2502.09827v2
- Date: Mon, 17 Feb 2025 08:34:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:09:36.023267
- Title: Data and Decision Traceability for SDA TAP Lab's Prototype Battle Management System
- Title(参考訳): SDA TAP Labの原型戦闘管理システムにおけるデータと決定トレーサビリティ
- Authors: Latha Pratti, Samya Bagchi, Yasir Latif,
- Abstract要約: 意思決定のトレーサビリティのコア目標は、WAシステム内の透明性、説明責任、整合性を保証することです。
これは、システムの入力から最終決定まで、明確で監査可能なパスを提供することによって達成されます。
- 参考スコア(独自算出の注目度): 5.451014659871832
- License:
- Abstract: Space Protocol is applying the principles derived from MITRE and NIST's Supply Chain Traceability: Manufacturing Meta-Framework (NIST IR 8536) to a complex multi party system to achieve introspection, auditing, and replay of data and decisions that ultimately lead to a end decision. The core goal of decision traceability is to ensure transparency, accountability, and integrity within the WA system. This is accomplished by providing a clear, auditable path from the system's inputs all the way to the final decision. This traceability enables the system to track the various algorithms and data flows that have influenced a particular outcome.
- Abstract(参考訳): Space Protocolは、MITREとNISTのサプライチェーントレーサビリティに由来する原則を適用している。 製造メタフレームワーク(NIST IR 8536)を複雑なマルチパーティシステムに適用することで、最終的に最終決定に至るデータと決定のイントロスペクション、監査、再生を実現している。
意思決定のトレーサビリティのコア目標は、WAシステム内の透明性、説明責任、整合性を保証することです。
これは、システムの入力から最終決定まで、明確で監査可能なパスを提供することによって達成されます。
このトレーサビリティにより、システムは特定の結果に影響を与える様々なアルゴリズムやデータフローを追跡することができる。
関連論文リスト
- End-to-End Verifiable Decentralized Federated Learning [1.374949083138427]
ブロックチェーンとゼロ知識証明(ZKP)を組み合わせた検証可能な分散連邦学習(FL)システム
本稿では、データのエンドツーエンドの整合性と信頼性を検証し、データソースに対する検証性を拡張するための検証可能な分散FLシステムを提案する。
論文 参考訳(メタデータ) (2024-04-19T04:43:01Z) - DriveCoT: Integrating Chain-of-Thought Reasoning with End-to-End Driving [81.04174379726251]
本稿では,DriveCoTというエンド・ツー・エンドの運転データセットを総合的に収集する。
センサーデータ、制御決定、および推論プロセスを示すチェーン・オブ・シークレット・ラベルが含まれている。
我々は,私たちのデータセットに基づいてトレーニングされたDriveCoT-Agentと呼ばれるベースラインモデルを提案し,連鎖予測と最終決定を生成する。
論文 参考訳(メタデータ) (2024-03-25T17:59:01Z) - TELLER: A Trustworthy Framework for Explainable, Generalizable and Controllable Fake News Detection [37.394874500480206]
本稿では,モデルの説明可能性,一般化性,制御性を重視した,信頼に値する偽ニュース検出のための新しいフレームワークを提案する。
これは認知と意思決定システムを統合するデュアルシステムフレームワークによって実現される。
提案手法の有効性と信頼性を実証し,4つのデータセットに対する総合的な評価結果を示す。
論文 参考訳(メタデータ) (2024-02-12T16:41:54Z) - Extracting Process-Aware Decision Models from Object-Centric Process
Data [54.04724730771216]
本稿では,ODDA(Integrated Object-centric Decision Discovery Algorithm)と呼ばれる,オブジェクト中心決定マイニングアルゴリズムを提案する。
IODDAは意思決定の仕組みや意思決定の仕方を知ることができる。
論文 参考訳(メタデータ) (2024-01-26T13:27:35Z) - Accountability in Offline Reinforcement Learning: Explaining Decisions
with a Corpus of Examples [70.84093873437425]
本稿では、オフラインデータセットを決定コーパスとして利用するAOC(Accountable Offline Controller)を紹介する。
AOCはローデータシナリオで効果的に動作し、厳密なオフラインの模倣設定まで拡張でき、保存性と適応性の両方の品質を示す。
シミュレーションおよび実世界の医療シナリオにおいて、AOCのパフォーマンスを評価し、説明責任を維持しながら高いレベルのパフォーマンスでオフライン制御タスクを管理する能力を強調した。
論文 参考訳(メタデータ) (2023-10-11T17:20:32Z) - An End-to-End Approach for Online Decision Mining and Decision Drift
Analysis in Process-Aware Information Systems: Extended Version [0.0]
決定マイニングは、イベントログやストリームから決定ルールの発見を可能にする。
オンライン意思決定マイニングは、意思決定ルールの進化と意思決定のドリフトを継続的に監視することを可能にする。
本稿では,発見のためのエンドツーエンドアプローチと,実行中の決定点とそれに対応する決定ルールの監視について述べる。
論文 参考訳(メタデータ) (2023-03-07T15:04:49Z) - Robust Control for Dynamical Systems With Non-Gaussian Noise via Formal
Abstractions [59.605246463200736]
雑音分布の明示的な表現に依存しない新しい制御器合成法を提案する。
まず、連続制御系を有限状態モデルに抽象化し、離散状態間の確率的遷移によってノイズを捕捉する。
我々は最先端の検証技術を用いてマルコフ決定プロセスの間隔を保証し、これらの保証が元の制御システムに受け継がれるコントローラを演算する。
論文 参考訳(メタデータ) (2023-01-04T10:40:30Z) - FAT Forensics: A Python Toolbox for Implementing and Deploying Fairness,
Accountability and Transparency Algorithms in Predictive Systems [69.24490096929709]
FAT ForensicsというオープンソースのPythonパッケージを開発しました。
予測アルゴリズムの重要な公平性、説明可能性、透明性を検査することができる。
私たちのツールボックスは、予測パイプラインのすべての要素を評価することができます。
論文 参考訳(メタデータ) (2022-09-08T13:25:02Z) - Task-Oriented Sensing, Computation, and Communication Integration for
Multi-Device Edge AI [108.08079323459822]
本稿では,AIモデルの分割推論と統合センシング通信(ISAC)を併用した,新しいマルチインテリジェントエッジ人工レイテンシ(AI)システムについて検討する。
推定精度は近似的だが抽出可能な計量、すなわち判別利得を用いて測定する。
論文 参考訳(メタデータ) (2022-07-03T06:57:07Z) - A Conceptual Framework for Establishing Trust in Real World Intelligent
Systems [0.0]
アルゴリズムの信頼は、ユーザーがシステムと対話できるようにすることで確立できます。
アルゴリズム結果に対するドメインの人間の理解の特徴とパターンを反映することで、そのようなパターンに対する認識を生み出すことができる。
閉じた検査を使用して、ソリューションが期待に合致するかどうか、または期待を超えるかどうかを判断できます。
論文 参考訳(メタデータ) (2021-04-12T12:58:47Z) - Closing the AI Accountability Gap: Defining an End-to-End Framework for
Internal Algorithmic Auditing [8.155332346712424]
本稿では,人工知能システム開発をエンドツーエンドでサポートするアルゴリズム監査フレームワークを提案する。
提案する監査フレームワークは,大規模人工知能システムの開発と展開において,説明責任のギャップを埋めることを目的としている。
論文 参考訳(メタデータ) (2020-01-03T20:19:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。