論文の概要: MonoForce: Learnable Image-conditioned Physics Engine
- arxiv url: http://arxiv.org/abs/2502.10156v1
- Date: Fri, 14 Feb 2025 13:36:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-17 14:44:27.460191
- Title: MonoForce: Learnable Image-conditioned Physics Engine
- Title(参考訳): MonoForce: 学習可能なイメージコンディショニング物理エンジン
- Authors: Ruslan Agishev, Karel Zimmermann,
- Abstract要約: そこで本研究では,車載カメラ画像から,荒れたオフロード地形におけるロボット軌道の予測モデルを提案する。
提案したハイブリッドモデルは,ロボットとテランの相互作用力とニューラル・シンボリック・レイヤとの相互作用力を予測するブラックボックス・コンポーネントを統合する。
この微分性は、高速なシミュレーション速度とともに、様々な用途に適している。
- 参考スコア(独自算出の注目度): 1.03590082373586
- License:
- Abstract: We propose a novel model for the prediction of robot trajectories on rough offroad terrain from the onboard camera images. This model enforces the laws of classical mechanics through a physics-aware neural symbolic layer while preserving the ability to learn from large-scale data as it is end-to-end differentiable. The proposed hybrid model integrates a black-box component that predicts robot-terrain interaction forces with a neural-symbolic layer. This layer includes a differentiable physics engine that computes the robot's trajectory by querying these forces at the points of contact with the terrain. As the proposed architecture comprises substantial geometrical and physics priors, the resulting model can also be seen as a learnable physics engine conditioned on real images that delivers $10^4$ trajectories per second. We argue and empirically demonstrate that this architecture reduces the sim-to-real gap and mitigates out-of-distribution sensitivity. The differentiability, in conjunction with the rapid simulation speed, makes the model well-suited for various applications including model predictive control, trajectory shooting, supervised and reinforcement learning or SLAM. The codes and data are publicly available.
- Abstract(参考訳): そこで本研究では,車載カメラ画像から,荒れたオフロード地形におけるロボット軌道の予測モデルを提案する。
このモデルは、物理学を意識したニューラルシンボル層を通じて古典力学の法則を強制し、エンド・ツー・エンドの微分可能な大規模データから学習する能力を保っている。
提案したハイブリッドモデルは,ロボットとテランの相互作用力とニューラル・シンボリック・レイヤとの相互作用力を予測するブラックボックス・コンポーネントを統合する。
この層には微分可能な物理エンジンが含まれており、地形に接触する地点でこれらの力を問うことでロボットの軌道を計算する。
提案したアーキテクチャは、幾何的および物理的な先行要素をかなり含んでいるため、実際の画像に条件付けされた学習可能な物理エンジンとして、毎秒10^4$の軌跡を届けることができる。
我々は、このアーキテクチャがsim-to-realギャップを減らし、アウト・オブ・ディストリビューションの感度を軽減していることを議論し、実証した。
モデル予測制御、軌道射撃、教師付きおよび強化学習、SLAMなど、様々な応用に適している。
コードとデータは公開されています。
関連論文リスト
- Physics Encoded Blocks in Residual Neural Network Architectures for Digital Twin Models [2.8720819157502344]
本稿では,新しい物理符号化残差ニューラルネットワークアーキテクチャに基づく汎用的アプローチを提案する。
本手法は,物理モデルからの数学的演算子として物理ブロックを,フィードフォワード層を構成する学習ブロックと組み合わせる。
従来のニューラルネットワーク方式と比較して,本手法はデータ要求量を大幅に減らして一般化性を向上させる。
論文 参考訳(メタデータ) (2024-11-18T11:58:20Z) - A Physics-embedded Deep Learning Framework for Cloth Simulation [6.8806198396336935]
本稿では,布地シミュレーションの物理特性を直接エンコードする物理組込み学習フレームワークを提案する。
このフレームワークは、従来のシミュレータやサブニューラルネットワークを通じて、外部の力や衝突処理と統合することもできる。
論文 参考訳(メタデータ) (2024-03-19T15:21:00Z) - Physics-Encoded Graph Neural Networks for Deformation Prediction under
Contact [87.69278096528156]
ロボット工学では、触覚相互作用における物体の変形を理解することが不可欠である。
本稿では,物理符号化グラフニューラルネットワーク(GNN)を用いた予測手法を提案する。
コードとデータセットを公開して、ロボットシミュレーションと把握の研究を進めました。
論文 参考訳(メタデータ) (2024-02-05T19:21:52Z) - Physics-Based Rigid Body Object Tracking and Friction Filtering From RGB-D Videos [8.012771454339353]
本稿では,RGB-D画像から剛体物体を3次元追跡し,物体の物理的特性を推定する手法を提案する。
実世界のデータセット上で、我々のアプローチを実証し、評価する。
論文 参考訳(メタデータ) (2023-09-27T14:46:01Z) - Context-Conditional Navigation with a Learning-Based Terrain- and Robot-Aware Dynamics Model [11.800678688260081]
我々は,TRADYNと呼ばれる新しい確率的,地形的,ロボット対応のフォワードダイナミクスモデルを開発した。
本研究では,一輪式ロボットと空間的に異なる摩擦係数を持つ異なる地形配置を備えた2次元ナビゲーション環境において,本手法の評価を行った。
論文 参考訳(メタデータ) (2023-07-18T12:42:59Z) - Differentiable Physics Simulation of Dynamics-Augmented Neural Objects [40.587385809005355]
深層ネットワークとしてパラメータ化された連続密度場としてそれらの幾何学を表現する物体の運動をシミュレートするための微分可能なパイプラインを提案する。
我々は、物体の運動特性、質量、質量の中心、慣性行列を推定する。
これによりロボットは、動いている物体の静止画像やビデオから視覚的かつ動的に正確な物体モデルを自律的に構築することができる。
論文 参考訳(メタデータ) (2022-10-17T20:37:46Z) - Human Trajectory Prediction via Neural Social Physics [63.62824628085961]
軌道予測は多くの分野において広く研究され、多くのモデルベースおよびモデルフリーな手法が研究されている。
ニューラル微分方程式モデルに基づく新しい手法を提案する。
我々の新しいモデル(ニューラル社会物理学またはNSP)は、学習可能なパラメータを持つ明示的な物理モデルを使用するディープニューラルネットワークである。
論文 参考訳(メタデータ) (2022-07-21T12:11:18Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - Dynamic Visual Reasoning by Learning Differentiable Physics Models from
Video and Language [92.7638697243969]
視覚概念を協調的に学習し,映像や言語から物体の物理モデルを推定する統合フレームワークを提案する。
これは視覚認識モジュール、概念学習モジュール、微分可能な物理エンジンの3つのコンポーネントをシームレスに統合することで実現される。
論文 参考訳(メタデータ) (2021-10-28T17:59:13Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
我々は、不完全物理モデルの深部生成モデルへの統合に焦点を当てる。
本稿では,潜在空間の一部が物理によって基底づけられたVAEアーキテクチャを提案する。
合成および実世界のデータセットの集合に対して生成的性能改善を示す。
論文 参考訳(メタデータ) (2021-02-25T20:28:52Z) - Occlusion resistant learning of intuitive physics from videos [52.25308231683798]
人工システムの鍵となる能力は、オブジェクト間の物理的相互作用を理解し、状況の将来的な結果を予測することである。
この能力は直感的な物理学と呼ばれ、近年注目されており、ビデオシーケンスからこれらの物理規則を学ぶためのいくつかの方法が提案されている。
論文 参考訳(メタデータ) (2020-04-30T19:35:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。