論文の概要: How to Learn and Generalize From Three Minutes of Data:
Physics-Constrained and Uncertainty-Aware Neural Stochastic Differential
Equations
- arxiv url: http://arxiv.org/abs/2306.06335v2
- Date: Sun, 15 Oct 2023 23:55:08 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-18 04:50:54.924430
- Title: How to Learn and Generalize From Three Minutes of Data:
Physics-Constrained and Uncertainty-Aware Neural Stochastic Differential
Equations
- Title(参考訳): 3分間のデータから学習と一般化:物理制約と不確実性を考慮したニューラル確率微分方程式
- Authors: Franck Djeumou and Cyrus Neary and Ufuk Topcu
- Abstract要約: ニューラル微分方程式(SDE)を用いた制御力学モデル学習のためのフレームワークとアルゴリズムを提案する。
本研究では,従来の物理知識を帰納バイアスとして活用するためのドリフト項を構築し,学習モデルの予測の不確かさを距離認識した推定値を表す拡散項を設計する。
我々は、シミュレーションロボットシステムの実験を通じてこれらの能力を実証し、ヘキサコプターの飛行力学をモデル化し制御する。
- 参考スコア(独自算出の注目度): 24.278738290287293
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a framework and algorithms to learn controlled dynamics models
using neural stochastic differential equations (SDEs) -- SDEs whose drift and
diffusion terms are both parametrized by neural networks. We construct the
drift term to leverage a priori physics knowledge as inductive bias, and we
design the diffusion term to represent a distance-aware estimate of the
uncertainty in the learned model's predictions -- it matches the system's
underlying stochasticity when evaluated on states near those from the training
dataset, and it predicts highly stochastic dynamics when evaluated on states
beyond the training regime. The proposed neural SDEs can be evaluated quickly
enough for use in model predictive control algorithms, or they can be used as
simulators for model-based reinforcement learning. Furthermore, they make
accurate predictions over long time horizons, even when trained on small
datasets that cover limited regions of the state space. We demonstrate these
capabilities through experiments on simulated robotic systems, as well as by
using them to model and control a hexacopter's flight dynamics: A neural SDE
trained using only three minutes of manually collected flight data results in a
model-based control policy that accurately tracks aggressive trajectories that
push the hexacopter's velocity and Euler angles to nearly double the maximum
values observed in the training dataset.
- Abstract(参考訳): 本稿では、ニューラルネットワークによってドリフト項と拡散項がパラメータ化されるSDEを用いて、制御力学モデルを学ぶためのフレームワークとアルゴリズムを提案する。
我々は,事前の物理学知識を帰納的バイアスとして活用するためにドリフト項を構築し,学習モデルの予測の不確実性に対する距離認識推定を表す拡散項を設計した。
提案するニューラルsdesはモデル予測制御アルゴリズムで使用するのに十分な速さで評価できるし、モデルに基づく強化学習のシミュレータとして使うことができる。
さらに、状態空間の限られた領域をカバーする小さなデータセットでトレーニングされた場合でも、長時間の地平線を越えて正確な予測を行う。
手動で収集した3分間の飛行データを用いてトレーニングされたニューラルSDEは、ヘキサコプターの速度とオイラー角を正確に追跡し、トレーニングデータセットで観測された最大値のほぼ2倍の速度で、攻撃的な軌道を正確に追跡するモデルベースの制御ポリシーを実行します。
関連論文リスト
- Scientific machine learning in ecological systems: A study on the predator-prey dynamics [1.4633779950109127]
我々は、学習データやニューラルネットワークにのみ依存して、システムの事前の知識なしに、基礎となる微分方程式を明らかにすることを目指している。
本稿では,LotkaVolterraシステムの予測と予測に,Neural ODEとUDEの両方を効果的に活用できることを実証する。
基礎となるダイナミクスを効果的に回復し、トレーニングデータを大幅に減らして正確な予測を行うことで、UDEがニューラルODEより優れているかを観察した。
論文 参考訳(メタデータ) (2024-11-11T10:40:45Z) - Trajectory Flow Matching with Applications to Clinical Time Series Modeling [77.58277281319253]
Trajectory Flow Matching (TFM) は、シミュレーションのない方法でニューラルSDEを訓練し、ダイナミックスを通してバックプロパゲーションをバイパスする。
絶対的性能と不確実性予測の観点から,3つの臨床時系列データセットの性能向上を実証した。
論文 参考訳(メタデータ) (2024-10-28T15:54:50Z) - Dynamical system prediction from sparse observations using deep neural networks with Voronoi tessellation and physics constraint [12.638698799995815]
本稿では,Voronoi Tessellation (DSOVT) フレームワークを用いたスパース観測からの動的システム予測について紹介する。
ボロノイテッセルレーションと深層学習モデルを統合することで、DSOVTは疎く非構造的な観測で力学系の予測に適している。
純粋にデータ駆動モデルと比較して、我々の物理学に基づくアプローチは、明示的に定式化された力学の中で物理法則を学習することができる。
論文 参考訳(メタデータ) (2024-08-31T13:43:52Z) - Equivariant Graph Neural Operator for Modeling 3D Dynamics [148.98826858078556]
我々は,次のステップの予測ではなく,ダイナミックスを直接トラジェクトリとしてモデル化するために,Equivariant Graph Neural Operator (EGNO)を提案する。
EGNOは3次元力学の時間的進化を明示的に学習し、時間とともに関数として力学を定式化し、それを近似するためにニューラル演算子を学習する。
粒子シミュレーション、人間のモーションキャプチャー、分子動力学を含む複数の領域における総合的な実験は、既存の手法と比較して、EGNOの極めて優れた性能を示す。
論文 参考訳(メタデータ) (2024-01-19T21:50:32Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - LEARNEST: LEARNing Enhanced Model-based State ESTimation for Robots
using Knowledge-based Neural Ordinary Differential Equations [4.3403382998035624]
本研究では、状態推定アルゴリズムで用いられる力学モデルを強化することにより、ロボットシステムの正確な状態推定を行うタスクについて考察する。
動的モデルの強化と推定精度の向上のために,知識ベースニューラル常微分方程式(KNODE)と呼ばれるディープラーニングフレームワークを利用する。
提案する LEARNEST フレームワークでは,データ駆動モデルと KNODE-MHE と KNODE-UKF の2つの新しいモデルベース状態推定アルゴリズムを統合する。
論文 参考訳(メタデータ) (2022-09-16T22:16:40Z) - Human Trajectory Prediction via Neural Social Physics [63.62824628085961]
軌道予測は多くの分野において広く研究され、多くのモデルベースおよびモデルフリーな手法が研究されている。
ニューラル微分方程式モデルに基づく新しい手法を提案する。
我々の新しいモデル(ニューラル社会物理学またはNSP)は、学習可能なパラメータを持つ明示的な物理モデルを使用するディープニューラルネットワークである。
論文 参考訳(メタデータ) (2022-07-21T12:11:18Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Using scientific machine learning for experimental bifurcation analysis
of dynamic systems [2.204918347869259]
本研究は、極限サイクルを持つ物理非線形力学系に対する普遍微分方程式(UDE)モデルの訓練に焦点をあてる。
数値シミュレーションによりトレーニングデータを生成する例を考察するとともに,提案するモデリング概念を物理実験に適用する。
ニューラルネットワークとガウス過程の両方を、力学モデルと共に普遍近似器として使用し、UDEモデリングアプローチの正確性と堅牢性を批判的に評価する。
論文 参考訳(メタデータ) (2021-10-22T15:43:03Z) - Incorporating Kinematic Wave Theory into a Deep Learning Method for
High-Resolution Traffic Speed Estimation [3.0969191504482243]
本研究では, 波動に基づく深部畳み込みニューラルネットワーク(Deep CNN)を提案し, スパースプローブ車両軌道から高分解能交通速度のダイナミクスを推定する。
我々は,既存の学習に基づく推定手法の堅牢性を改善するために,運動波理論の原理を取り入れるための2つの重要なアプローチを導入する。
論文 参考訳(メタデータ) (2021-02-04T21:51:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。