論文の概要: MetaDE: Evolving Differential Evolution by Differential Evolution
- arxiv url: http://arxiv.org/abs/2502.10470v1
- Date: Thu, 13 Feb 2025 09:24:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:16:49.617519
- Title: MetaDE: Evolving Differential Evolution by Differential Evolution
- Title(参考訳): MetaDE: 差分進化による差分進化を進化させる
- Authors: Minyang Chen, Chenchen Feng, and Ran Cheng,
- Abstract要約: 微分進化の内在的ハイパーパラメータとDそのものをメタレベルで利用する戦略を進化させるアプローチであるMetaDEを紹介する。
MetaDEの重要な側面は特別なパラメータ化技術であり、DEのパラメータと戦略を動的に変更する機能を備えている。
CEC2022ベンチマークスイートの大規模な評価は、MetaDEの有望なパフォーマンスを示している。
- 参考スコア(独自算出の注目度): 7.639181392953902
- License:
- Abstract: As a cornerstone in the Evolutionary Computation (EC) domain, Differential Evolution (DE) is known for its simplicity and effectiveness in handling challenging black-box optimization problems. While the advantages of DE are well-recognized, achieving peak performance heavily depends on its hyperparameters such as the mutation factor, crossover probability, and the selection of specific DE strategies. Traditional approaches to this hyperparameter dilemma have leaned towards parameter tuning or adaptive mechanisms. However, identifying the optimal settings tailored for specific problems remains a persistent challenge. In response, we introduce MetaDE, an approach that evolves DE's intrinsic hyperparameters and strategies using DE itself at a meta-level. A pivotal aspect of MetaDE is a specialized parameterization technique, which endows it with the capability to dynamically modify DE's parameters and strategies throughout the evolutionary process. To augment computational efficiency, MetaDE incorporates a design that leverages parallel processing through a GPU-accelerated computing framework. Within such a framework, DE is not just a solver but also an optimizer for its own configurations, thus streamlining the process of hyperparameter optimization and problem-solving into a cohesive and automated workflow. Extensive evaluations on the CEC2022 benchmark suite demonstrate MetaDE's promising performance. Moreover, when applied to robot control via evolutionary reinforcement learning, MetaDE also demonstrates promising performance. The source code of MetaDE is publicly accessible at: https://github.com/EMI-Group/metade.
- Abstract(参考訳): 進化計算(EC)領域の基盤として、差分進化(DE)はブラックボックス最適化問題に挑戦する際の単純さと有効性で知られている。
DEの利点はよく認識されているが、ピーク性能の達成は突然変異係数、クロスオーバー確率、特定のD戦略の選択などのハイパーパラメータに大きく依存している。
このハイパーパラメータジレンマに対する伝統的なアプローチは、パラメータチューニングや適応メカニズムに傾いている。
しかし、特定の問題に適した最適な設定を特定することは、依然として永続的な課題である。
そこで本研究では,De 固有のハイパーパラメータと,D 自体をメタレベルで利用する戦略を進化させるアプローチである MetaDE を紹介する。
MetaDEの重要な側面は特別なパラメータ化技術であり、進化過程を通してDEのパラメータと戦略を動的に修正する機能を備えている。
計算効率を向上させるため、MetaDEはGPU加速コンピューティングフレームワークを通じて並列処理を活用する設計を取り入れている。
このようなフレームワークの中では、DEは単に解決者ではなく、独自の設定のための最適化者でもあるため、ハイパーパラメータ最適化と問題解決のプロセスを、凝集的で自動化されたワークフローに合理化することができる。
CEC2022ベンチマークスイートの大規模な評価は、MetaDEの有望なパフォーマンスを示している。
さらに、進化的強化学習によるロボット制御に適用すると、MetaDEは有望な性能を示す。
MetaDEのソースコードは、https://github.com/EMI-Group/metade.comで公開されている。
関連論文リスト
- A Stochastic Approach to Bi-Level Optimization for Hyperparameter Optimization and Meta Learning [74.80956524812714]
我々は,現代のディープラーニングにおいて広く普及している一般的なメタ学習問題に対処する。
これらの問題は、しばしばBi-Level Optimizations (BLO)として定式化される。
我々は,与えられたBLO問題を,内部損失関数が滑らかな分布となり,外損失が内部分布に対する期待損失となるようなii最適化に変換することにより,新たな視点を導入する。
論文 参考訳(メタデータ) (2024-10-14T12:10:06Z) - Simultaneous and Meshfree Topology Optimization with Physics-informed Gaussian Processes [0.0]
トポロジ最適化(TO)は、その物質空間分布を予め定義された領域で設計し、制約の集合に従うことによって、構造の性能を最適化する原理的な数学的アプローチを提供する。
我々は,ガウス過程(GP)の枠組みに基づく新しいTO手法を開発し,その平均関数はディープニューラルネットワークを介してパラメータ化される。
本手法を商用ソフトウェアに実装した従来のTO手法に対して検証するため,ストークスフローにおける消散電力の最小化を含む4つの問題に対して評価を行った。
論文 参考訳(メタデータ) (2024-08-07T01:01:35Z) - An investigation on the use of Large Language Models for hyperparameter tuning in Evolutionary Algorithms [4.0998481751764]
最適化ログをオンラインで分析するために,オープンソースのLarge Language Models (LLM) を2つ採用している。
本研究では, (1+1)-ESのステップサイズ適応の文脈におけるアプローチについて検討する。
論文 参考訳(メタデータ) (2024-08-05T13:20:41Z) - PRANCE: Joint Token-Optimization and Structural Channel-Pruning for Adaptive ViT Inference [44.77064952091458]
PRANCEはVision Transformer圧縮フレームワークで、アクティベートされたチャネルを共同で最適化し、入力の特性に基づいてトークンを削減する。
本稿では,ViTの推論過程を逐次決定プロセスとしてモデル化する,新しい「結果と結果」学習機構を提案する。
我々のフレームワークは、プルーニング、マージング、プルーニングマージングといった様々なトークン最適化手法と互換性があることが示されている。
論文 参考訳(メタデータ) (2024-07-06T09:04:27Z) - Adaptive Preference Scaling for Reinforcement Learning with Human Feedback [103.36048042664768]
人間からのフィードバックからの強化学習(RLHF)は、AIシステムと人間の価値を合わせるための一般的なアプローチである。
本稿では,分散ロバスト最適化(DRO)に基づく適応的優先損失を提案する。
提案手法は多用途であり,様々な選好最適化フレームワークに容易に適用可能である。
論文 参考訳(メタデータ) (2024-06-04T20:33:22Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
機械学習における予測-Then-Forecast(PtO)パラダイムは、下流の意思決定品質を最大化することを目的としている。
本稿では,PtO法を拡張して,OWA(Nondifferentiable Ordered Weighted Averaging)の目的を最適化する。
この結果から,不確実性の下でのOWA関数の最適化とパラメトリック予測を効果的に統合できることが示唆された。
論文 参考訳(メタデータ) (2024-02-12T16:33:35Z) - Evolving Pareto-Optimal Actor-Critic Algorithms for Generalizability and
Stability [67.8426046908398]
汎用性と安定性は,実世界における強化学習(RL)エージェントの運用において重要な2つの目的である。
本稿では,アクター・クリティック・ロス関数の自動設計法であるMetaPGを提案する。
論文 参考訳(メタデータ) (2022-04-08T20:46:16Z) - A Comparative study of Hyper-Parameter Optimization Tools [2.6097538974670935]
我々は、4つのpythonライブラリ、すなわちOptuna、Hyperopt、Optunity、およびシーケンシャルモデルアルゴリズム構成(SMAC)の性能を比較した。
私たちは、OptunaがCASH問題とNeurIPSのブラックボックス最適化の課題に対してより良いパフォーマンスを持つことを発見した。
論文 参考訳(メタデータ) (2022-01-17T14:49:36Z) - Optimizing Large-Scale Hyperparameters via Automated Learning Algorithm [97.66038345864095]
ゼロ階超勾配(HOZOG)を用いた新しいハイパーパラメータ最適化法を提案する。
具体的には、A型制約最適化問題として、まずハイパーパラメータ最適化を定式化する。
次に、平均ゼロ階超勾配を用いてハイパーパラメータを更新する。
論文 参考訳(メタデータ) (2021-02-17T21:03:05Z) - Better call Surrogates: A hybrid Evolutionary Algorithm for
Hyperparameter optimization [18.359749929678635]
機械学習(ML)モデルのハイパーパラメータ最適化のための代理支援進化アルゴリズム(EA)を提案する。
提案したSTEADEモデルは,まずRadialBasis関数を用いて目的関数のランドスケープを推定し,その知識を微分進化(differial Evolution)と呼ばれるEA技術に伝達する。
NeurIPS 2020のブラックボックス最適化課題の一環として、ハイパーパラメータ最適化問題に関するモデルを実証的に評価し、STEADEがバニラEAにもたらした改善を実証しました。
論文 参考訳(メタデータ) (2020-12-11T16:19:59Z) - EOS: a Parallel, Self-Adaptive, Multi-Population Evolutionary Algorithm
for Constrained Global Optimization [68.8204255655161]
EOSは実数値変数の制約付きおよび制約なし問題に対する大域的最適化アルゴリズムである。
これはよく知られた微分進化(DE)アルゴリズムに多くの改良を加えている。
その結果、EOSisは、最先端の単一人口自己適応Dアルゴリズムと比較して高い性能を達成可能であることが証明された。
論文 参考訳(メタデータ) (2020-07-09T10:19:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。