論文の概要: On Self-Adaptive Perception Loss Function for Sequential Lossy Compression
- arxiv url: http://arxiv.org/abs/2502.10628v1
- Date: Sat, 15 Feb 2025 01:41:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:08:22.726531
- Title: On Self-Adaptive Perception Loss Function for Sequential Lossy Compression
- Title(参考訳): 連続的損失圧縮のための自己適応型知覚損失関数について
- Authors: Sadaf Salehkalaibar, Buu Phan, Likun Cai, Joao Atz Dick, Wei Yu, Jun Chen, Ashish Khisti,
- Abstract要約: 我々は、平均二乗誤差(MSE)を歪み損失とする因果的、低レイテンシ、逐次的損失圧縮と、再建の現実性を高めるための知覚損失関数(PLF)を考察した。
我々は、一階マルコフ源に対する理論速度歪み知覚関数を確立し、ガウス模型を詳細に解析する。
提案手法は, 自己適応型知覚損失関数 (PLF-SA) と呼ばれる。
- 参考スコア(独自算出の注目度): 29.361832071511795
- License:
- Abstract: We consider causal, low-latency, sequential lossy compression, with mean squared-error (MSE) as the distortion loss, and a perception loss function (PLF) to enhance the realism of reconstructions. As the main contribution, we propose and analyze a new PLF that considers the joint distribution between the current source frame and the previous reconstructions. We establish the theoretical rate-distortion-perception function for first-order Markov sources and analyze the Gaussian model in detail. From a qualitative perspective, the proposed metric can simultaneously avoid the error-permanence phenomenon and also better exploit the temporal correlation between high-quality reconstructions. The proposed metric is referred to as self-adaptive perception loss function (PLF-SA), as its behavior adapts to the quality of reconstructed frames. We provide a detailed comparison of the proposed perception loss function with previous approaches through both information theoretic analysis as well as experiments involving moving MNIST and UVG datasets.
- Abstract(参考訳): 我々は、平均二乗誤差(MSE)を歪み損失とする因果的、低レイテンシ、逐次的損失圧縮と、再建の現実性を高めるための知覚損失関数(PLF)を考察した。
主な貢献として、現在のソースフレームと以前の再構成との結合分布を考慮した新しいPLFを提案し、分析する。
我々は、一階マルコフ源に対する理論速度歪み知覚関数を確立し、ガウス模型を詳細に解析する。
定性的な観点から、提案手法はエラーパーマンス現象を同時に回避し、高品質な復元の時間的相関をよりよく活用することができる。
提案手法は, 自己適応型知覚損失関数 (PLF-SA) と呼ばれる。
本稿では、情報理論解析とMNISTとUVGデータセットの移動を含む実験の両方を通して、従来の手法との認識損失関数の詳細な比較を行う。
関連論文リスト
- Perceptual-Distortion Balanced Image Super-Resolution is a Multi-Objective Optimization Problem [23.833099288826045]
画素ベースの回帰損失を用いた単一画像超解法(SISR)モデルのトレーニングは、高い歪みメトリクススコアを得ることができる。
しかし、高周波の詳細の回復が不十分なため、しばしばぼやけた画像が生じる。
本稿では,Multi-Objective Optimization(MOO)をSISRモデルのトレーニングプロセスに組み込んで,知覚品質と歪みのバランスをとる手法を提案する。
論文 参考訳(メタデータ) (2024-09-05T02:14:04Z) - Low-resolution Prior Equilibrium Network for CT Reconstruction [3.5639148953570836]
本稿では,低分解能画像を導入し,ネットワークの堅牢性を改善するための効果的な正規化項を得る,新しいディープラーニングベースのCT再構成モデルを提案する。
狭角化と狭角化の両問題を実験的に検討し, ノイズ低減, コントラスト・ツー・ノイズ比, エッジ細部保存の両面において, エンド・ツー・エンドの低分解能事前平衡モデルが他の最先端手法よりも優れていることを示した。
論文 参考訳(メタデータ) (2024-01-28T13:59:58Z) - On the Dynamics Under the Unhinged Loss and Beyond [104.49565602940699]
我々は、閉形式力学を解析するための数学的機会を提供する、簡潔な損失関数であるアンヒンジド・ロスを導入する。
アンヒンジされた損失は、時間変化学習率や特徴正規化など、より実践的なテクニックを検討することができる。
論文 参考訳(メタデータ) (2023-12-13T02:11:07Z) - A PAC-Bayesian Perspective on the Interpolating Information Criterion [54.548058449535155]
補間系の性能に影響を及ぼす要因を特徴付ける一般モデルのクラスに対して,PAC-Bayes境界がいかに得られるかを示す。
オーバーパラメータ化モデルに対するテスト誤差が、モデルとパラメータの初期化スキームの組み合わせによって課される暗黙の正規化の品質に依存するかの定量化を行う。
論文 参考訳(メタデータ) (2023-11-13T01:48:08Z) - On the Choice of Perception Loss Function for Learned Video Compression [31.865079406929276]
出力が平均二乗誤差(MSE)歪み損失および認識損失を受ける場合の因果的,低レイテンシ,逐次的ビデオ圧縮について検討した。
認識損失関数(PLF)の選択は,特に低ビットレートにおいて,再建に有意な影響を及ぼす可能性が示唆された。
論文 参考訳(メタデータ) (2023-05-30T14:24:40Z) - Compressed Regression over Adaptive Networks [58.79251288443156]
分散エージェントのネットワークによって達成可能な性能を導出し,通信制約や回帰問題を解消し,適応的に解決する。
エージェントによって最適化に必要なパラメータをオンラインで学習できる最適化アロケーション戦略を考案する。
論文 参考訳(メタデータ) (2023-04-07T13:41:08Z) - DiracDiffusion: Denoising and Incremental Reconstruction with Assured Data-Consistency [24.5360032541275]
拡散モデルは、画像復元を含む多数のコンピュータビジョンタスクにおいて、この技術の新たな状態を確立した。
逆問題解決のための新しい枠組みを提案する。つまり、観測は徐々に劣化し、元のクリーンイメージにノイズを与える劣化過程から来ていると仮定する。
本手法は, 逆過程を通じて元の計測値との整合性を維持し, 歪み指標の改善と早期ストッピングによるサンプリング高速化のために, 知覚品質のトレードオフに優れた柔軟性を実現する。
論文 参考訳(メタデータ) (2023-03-25T04:37:20Z) - Making Reconstruction-based Method Great Again for Video Anomaly
Detection [64.19326819088563]
ビデオの異常検出は重要な問題だが、難しい問題だ。
既存の再構成に基づく手法は、昔ながらの畳み込みオートエンコーダに依存している。
連続フレーム再構築のための新しいオートエンコーダモデルを提案する。
論文 参考訳(メタデータ) (2023-01-28T01:57:57Z) - Relationship Quantification of Image Degradations [72.98190570967937]
劣化関係指数(DRI)は,2モデル間の検証損失の平均ドロップレート差として定義される。
DRIは常に、特定の劣化を列車モデルの補助として利用することで、性能改善を予測します。
得られた劣化組合せがアンカー劣化性能を向上させることができるかどうかを簡易かつ効果的に推定する手法を提案する。
論文 参考訳(メタデータ) (2022-12-08T09:05:19Z) - Variational Laplace Autoencoders [53.08170674326728]
変分オートエンコーダは、遅延変数の後部を近似するために、償却推論モデルを用いる。
完全分解ガウス仮定の限定的後部表現性に対処する新しい手法を提案する。
また、深部生成モデルのトレーニングのための変分ラプラスオートエンコーダ(VLAE)という一般的なフレームワークも提示する。
論文 参考訳(メタデータ) (2022-11-30T18:59:27Z) - Learned convex regularizers for inverse problems [3.294199808987679]
本稿では,逆問題に対する正規化器として,データ適応型入力ニューラルネットワーク(ICNN)を学習することを提案する。
パラメータ空間における単調な誤差を反復で減少させる部分次アルゴリズムの存在を実証する。
提案した凸正則化器は, 逆問題に対する最先端のデータ駆動技術に対して, 少なくとも競争力があり, 時には優位であることを示す。
論文 参考訳(メタデータ) (2020-08-06T18:58:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。