論文の概要: MITRE ATT&CK Applications in Cybersecurity and The Way Forward
- arxiv url: http://arxiv.org/abs/2502.10825v1
- Date: Sat, 15 Feb 2025 15:01:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:13:33.777908
- Title: MITRE ATT&CK Applications in Cybersecurity and The Way Forward
- Title(参考訳): MITRE ATT&CKのサイバーセキュリティへの応用と今後の展開
- Authors: Yuning Jiang, Qiaoran Meng, Feiyang Shang, Nay Oo, Le Thi Hong Minh, Hoon Wei Lim, Biplab Sikdar,
- Abstract要約: MITRE ATT&CKフレームワークは、サイバーセキュリティを強化し、脅威インテリジェンス、インシデント対応、アタックモデリング、脆弱性優先順位付けをサポートするために広く採用されているツールである。
本論文は417冊の査読論文を解析し,これらの分野にまたがる応用研究を合成する。
我々は、一般的に使用される敵戦術、技法、手順(TTP)を特定し、脅威検出と応答を改善するために自然言語処理(NLP)と機械学習(ML)の統合を検討する。
- 参考スコア(独自算出の注目度): 18.339713576170396
- License:
- Abstract: The MITRE ATT&CK framework is a widely adopted tool for enhancing cybersecurity, supporting threat intelligence, incident response, attack modeling, and vulnerability prioritization. This paper synthesizes research on its application across these domains by analyzing 417 peer-reviewed publications. We identify commonly used adversarial tactics, techniques, and procedures (TTPs) and examine the integration of natural language processing (NLP) and machine learning (ML) with ATT&CK to improve threat detection and response. Additionally, we explore the interoperability of ATT&CK with other frameworks, such as the Cyber Kill Chain, NIST guidelines, and STRIDE, highlighting its versatility. The paper further evaluates the framework from multiple perspectives, including its effectiveness, validation methods, and sector-specific challenges, particularly in industrial control systems (ICS) and healthcare. We conclude by discussing current limitations and proposing future research directions to enhance the applicability of ATT&CK in dynamic cybersecurity environments.
- Abstract(参考訳): MITRE ATT&CKフレームワークは、サイバーセキュリティを強化し、脅威インテリジェンス、インシデント対応、アタックモデリング、脆弱性優先順位付けをサポートするために広く採用されているツールである。
本論文は417冊の査読論文を解析し,これらの分野にまたがる応用研究を合成する。
我々は、一般的に使用される敵戦術、技法、手順(TTP)を特定し、脅威検出と応答を改善するために自然言語処理(NLP)と機械学習(ML)の統合を検討する。
さらに、ATT&CKとCyber Kill Chain、NISTガイドライン、STRIDEといった他のフレームワークとの相互運用性についても検討し、その汎用性を強調します。
本稿では,その有効性,検証方法,セクター固有の課題,特に産業制御システム(ICS)や医療など,多面的な観点から,この枠組みをさらに評価する。
我々は、現在の制限について議論し、動的サイバーセキュリティ環境におけるATT&CKの適用性を高めるための今後の研究方向性を提案する。
関連論文リスト
- SoK: Unifying Cybersecurity and Cybersafety of Multimodal Foundation Models with an Information Theory Approach [58.93030774141753]
MFM(Multimodal foundation model)は、人工知能の大幅な進歩を表す。
本稿では,マルチモーダル学習におけるサイバーセーフティとサイバーセキュリティを概念化する。
我々は、これらの概念をMFMに統一し、重要な脅威を特定するための総合的知識体系化(SoK)を提案する。
論文 参考訳(メタデータ) (2024-11-17T23:06:20Z) - CTINEXUS: Leveraging Optimized LLM In-Context Learning for Constructing Cybersecurity Knowledge Graphs Under Data Scarcity [49.657358248788945]
サイバー脅威インテリジェンス(CTI)レポートのテキスト記述は、サイバー脅威に関する豊富な知識源である。
現在のCTI抽出法は柔軟性と一般化性に欠けており、しばしば不正確で不完全な知識抽出をもたらす。
CTINexusは,大規模言語モデルのテキスト内学習(ICL)を最適化した新しいフレームワークである。
論文 参考訳(メタデータ) (2024-10-28T14:18:32Z) - Jailbreaking and Mitigation of Vulnerabilities in Large Language Models [4.564507064383306]
大規模言語モデル(LLM)は、自然言語の理解と生成を前進させることで、人工知能を変革した。
これらの進歩にもかかわらず、LSMは、特に注射と脱獄攻撃を急ぐために、かなりの脆弱性を示してきた。
このレビューでは、これらの脆弱性についての研究状況を分析し、利用可能な防衛戦略を提示する。
論文 参考訳(メタデータ) (2024-10-20T00:00:56Z) - Safeguarding Large Language Models: A Survey [20.854570045229917]
大規模言語モデル(LLM)の倫理的使用を所定の範囲内で確実にするための「保護」や「ガードレール」が義務付けられている。
本稿は、この重要なメカニズムの現状について、体系的な文献レビューを提供する。
その主な課題と、様々な文脈における倫理的問題を扱う包括的なメカニズムにどのように拡張できるかを論じる。
論文 参考訳(メタデータ) (2024-06-03T19:27:46Z) - Enhancing Physical Layer Communication Security through Generative AI with Mixture of Experts [80.0638227807621]
生成人工知能(GAI)モデルは、従来のAI手法よりも優れていることを示した。
ゲート機構による予測に複数の専門家モデルを使用するMoEは、可能なソリューションを提案する。
論文 参考訳(メタデータ) (2024-05-07T11:13:17Z) - Generative AI for Secure Physical Layer Communications: A Survey [80.0638227807621]
Generative Artificial Intelligence(GAI)は、AIイノベーションの最前線に立ち、多様なコンテンツを生成するための急速な進歩と非並行的な能力を示す。
本稿では,通信ネットワークの物理層におけるセキュリティ向上におけるGAIの様々な応用について,広範な調査を行う。
私たちは、物理的レイヤセキュリティの課題に対処する上で、GAIの役割を掘り下げ、通信の機密性、認証、可用性、レジリエンス、整合性に重点を置いています。
論文 参考訳(メタデータ) (2024-02-21T06:22:41Z) - The Role of Deep Learning in Advancing Proactive Cybersecurity Measures
for Smart Grid Networks: A Survey [1.0589208420411014]
本研究では,スマートグリッドにおけるディープラーニング(DL)を活用した積極的なサイバー防御戦略について検討する。
DL対応のプロアクティブディフェンスに焦点が当てられ、SGのプロアクティブディフェンスにおける役割と関連性を強調している。
調査では,DLベースのセキュリティシステムをSG内に展開する上での課題がリストアップされている。
論文 参考訳(メタデータ) (2024-01-11T13:14:40Z) - MITRE ATT&CK: State of the Art and Way Forward [2.0755366440393743]
MITRE ATT&CKフレームワークを活用した技術の現状の総合的な収集、研究、調査に、これまでの研究はなされていない。
我々は、50以上の主要な研究貢献を選定し、MITRE ATT&CKフレームワークに関して、その方法論と目的を詳細に分析する。
論文 参考訳(メタデータ) (2023-08-27T06:26:35Z) - Towards Automated Classification of Attackers' TTPs by combining NLP
with ML Techniques [77.34726150561087]
我々は,NLP(Natural Language Processing)と,研究におけるセキュリティ情報抽出に使用される機械学習技術の評価と比較を行った。
本研究では,攻撃者の戦術や手法に従って非構造化テキストを自動的に分類するデータ処理パイプラインを提案する。
論文 参考訳(メタデータ) (2022-07-18T09:59:21Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
本稿では,機械学習技術に基づくセキュリティソリューションに対する敵攻撃に関する最新の研究を要約する。
サイバーセキュリティドメインでエンドツーエンドの敵攻撃を実装するという、ユニークな課題を議論するのは、これが初めてである。
論文 参考訳(メタデータ) (2020-07-05T18:22:40Z) - Automated Retrieval of ATT&CK Tactics and Techniques for Cyber Threat
Reports [5.789368942487406]
我々は,非構造化テキストから戦術,技法,手順を自動的に抽出するいくつかの分類手法を評価する。
我々は、私たちの発見に基づいて構築されたツールrcATTを紹介し、サイバー脅威レポートの自動分析をサポートするために、セキュリティコミュニティに自由に配布する。
論文 参考訳(メタデータ) (2020-04-29T16:45:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。