論文の概要: Towards Automatic Identification of Missing Tissues using a Geometric-Learning Correspondence Model
- arxiv url: http://arxiv.org/abs/2502.11265v1
- Date: Sun, 16 Feb 2025 20:43:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:09:13.247980
- Title: Towards Automatic Identification of Missing Tissues using a Geometric-Learning Correspondence Model
- Title(参考訳): 幾何学学習対応モデルを用いた欠損組織の自動同定に向けて
- Authors: Eliana M. Vasquez Osorio, Edward Henderson,
- Abstract要約: 患者内構造メッシュの欠損組織を同定するためのパイプラインを提案する。
これは、対応する解剖学で欠落点を特定するために幾何学的学習モデルが提案された初めての例である。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Missing tissue presents a big challenge for dose mapping, e.g., in the reirradiation setting. We propose a pipeline to identify missing tissue on intra-patient structure meshes using a previously trained geometric-learning correspondence model. For our application, we relied on the prediction discrepancies between forward and backward correspondences of the input meshes, quantified using a correspondence-based Inverse Consistency Error (cICE). We optimised the threshold applied to cICE to identify missing points in a dataset of 35 simulated mandible resections. Our identified threshold, 5.5 mm, produced a balanced accuracy score of 0.883 in the training data, using an ensemble approach. This pipeline produced plausible results for a real case where ~25% of the mandible was removed after a surgical intervention. The pipeline, however, failed on a more extreme case where ~50% of the mandible was removed. This is the first time geometric-learning modelling is proposed to identify missing points in corresponding anatomy.
- Abstract(参考訳): 欠損組織は放射線治療において線量マッピング(eg)に大きな課題をもたらす。
本研究では,以前に訓練された幾何学的学習対応モデルを用いて,患者内構造メッシュ上の欠損組織を同定するパイプラインを提案する。
本研究では,入力メッシュの前方および後方対応の予測誤差を,対応型逆整合誤差(cICE)を用いて定量化した。
我々は,35個の下顎骨切除データセットの欠損点を特定するために,cICEに適用した閾値を最適化した。
得られた閾値5.5mmは, アンサンブル法を用いて, トレーニングデータで0.883のバランス精度スコアを得た。
このパイプラインは,外科的介入により下顎の25%が摘出された実例に対して,有意な結果が得られた。
しかし、パイプラインはより極端なケースで失敗し、下顎骨の50%が取り除かれた。
これは、対応する解剖学で欠落点を特定するために幾何学的学習モデルが提案された初めての例である。
関連論文リスト
- Unsupervised correspondence with combined geometric learning and imaging
for radiotherapy applications [0.0]
本研究の目的は, 放射線治療への応用において, 異なる患者の臓器区分間の対応点を正確に同定するモデルを開発することである。
3次元形状の同時対応と推定のためのモデルとして,頭部と頸部の臓器の分節をCTスキャンから訓練した。
次に、2つのアプローチを用いて画像情報を組み込むため、オリジナルモデルを拡張した。
論文 参考訳(メタデータ) (2023-09-25T16:29:18Z) - Domain Adaptive Synapse Detection with Weak Point Annotations [63.97144211520869]
弱点アノテーションを用いたドメイン適応型シナプス検出のためのフレームワークであるAdaSynを提案する。
I SBI 2023のWASPSYNチャレンジでは、我々の手法が第1位にランクインした。
論文 参考訳(メタデータ) (2023-08-31T05:05:53Z) - Adapting the Mean Teacher for keypoint-based lung registration under
geometric domain shifts [75.51482952586773]
ディープニューラルネットワークは一般的に、ラベル付きトレーニングデータが多く必要であり、トレーニングデータとテストデータの間のドメインシフトに弱い。
本稿では,ラベル付きソースからラベル付きターゲットドメインへのモデルの適用により,画像登録のための幾何学的領域適応手法を提案する。
本手法は,ベースラインモデルの精度を目標データに適合させながら,ベースラインモデルの50%/47%を継続的に改善する。
論文 参考訳(メタデータ) (2022-07-01T12:16:42Z) - An Efficient End-to-End Deep Neural Network for Interstitial Lung
Disease Recognition and Classification [0.5424799109837065]
本稿では、IDDパターンを分類するためのエンドツーエンドのディープ畳み込みニューラルネットワーク(CNN)を提案する。
提案モデルでは,カーネルサイズが異なる4つの畳み込み層と,Rectified Linear Unit (ReLU) アクティベーション機能を備える。
128のCTスキャンと5つのクラスからなる21328の画像パッチからなるデータセットを用いて、提案モデルのトレーニングと評価を行う。
論文 参考訳(メタデータ) (2022-04-21T06:36:10Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
脳の灰白質細胞構造の特徴は、体密度と体積に定量的に敏感であり、dMRIでは未解決の課題である。
我々は新しいフォワードモデル、特に新しい方程式系を提案し、比較的スパースなb殻を必要とする。
次に,提案手法を逆転させるため,確率自由推論 (LFI) として知られるベイズ解析から最新のツールを適用した。
論文 参考訳(メタデータ) (2021-11-15T09:08:27Z) - Densely connected neural networks for nonlinear regression [8.830042935753303]
本稿では,畳み込み層とプール層を完全連結層に置き換えた新しいDenseNet回帰モデルを提案する。
結果は最適な深さ(19)を与え、限られた入力次元(200以下)を推奨する。
最終的に、DenseNet回帰は相対湿度を予測するために適用され、その結果は観測と高い相関(0.91)を示す。
論文 参考訳(メタデータ) (2021-07-29T03:41:56Z) - Neural Network-derived perfusion maps: a Model-free approach to computed
tomography perfusion in patients with acute ischemic stroke [4.925222726301579]
畳み込みニューラルネットワーク(CNN)はCT灌流データから臨床的に関連するパラメトリックマップを生成することができる。
cnnベースのアプローチは,最先端の灌流解析法に匹敵する臨床関連灌流マップを作成した。
論文 参考訳(メタデータ) (2021-01-15T07:11:02Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
本研究では,不確実性解析とグラフ畳み込みネットワークに基づくセグメンテーション改善手法を提案する。
半教師付きグラフ学習問題を定式化するために、特定の入力ボリュームにおける畳み込みネットワークの不確実性レベルを用いる。
本手法は膵臓で1%,脾臓で2%向上し,最先端のCRF改善法よりも優れていた。
論文 参考訳(メタデータ) (2020-12-06T18:55:07Z) - Collaborative Boundary-aware Context Encoding Networks for Error Map
Prediction [65.44752447868626]
本稿では,AEP-Net と呼ばれる協調的コンテキスト符号化ネットワークを提案する。
具体的には、画像とマスクのより優れた特徴融合のための協調的な特徴変換分岐と、エラー領域の正確な局所化を提案する。
AEP-Netはエラー予測タスクの平均DSCが0.8358,0.8164であり、ピアソン相関係数が0.9873である。
論文 参考訳(メタデータ) (2020-06-25T12:42:01Z) - Appearance Learning for Image-based Motion Estimation in Tomography [60.980769164955454]
トモグラフィー画像では、取得した信号に擬似逆フォワードモデルを適用することにより、解剖学的構造を再構成する。
患者の動きは、復元過程における幾何学的アライメントを損なうため、運動アーティファクトが生じる。
本研究では,スキャン対象から独立して剛性運動の構造を認識する外観学習手法を提案する。
論文 参考訳(メタデータ) (2020-06-18T09:49:11Z) - BReG-NeXt: Facial Affect Computing Using Adaptive Residual Networks With
Bounded Gradient [4.41738804598711]
本稿では,単純なショートカットパスの代わりに関数wtih境界微分を用いた残差ベースネットワークアーキテクチャであるBReG-NeXtを紹介する。
ResNetと比較して、我々の提案した適応的複素写像は、訓練パラメータの少ない浅いネットワークと1秒あたりの浮動小数点演算(FLOP)で得られる。
我々は,AffectNet,FER2013,Affect-in-Wildの難易度データベースに影響を及ぼすカテゴリモデルと次元モデルに関する総合的な実験を行った。
論文 参考訳(メタデータ) (2020-04-18T00:26:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。