論文の概要: AI Generations: From AI 1.0 to AI 4.0
- arxiv url: http://arxiv.org/abs/2502.11312v1
- Date: Sun, 16 Feb 2025 23:19:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:12:00.058764
- Title: AI Generations: From AI 1.0 to AI 4.0
- Title(参考訳): AI生成: AI 1.0からAI 4.0へ
- Authors: Jiahao Wu, Hengxu You, Jing Du,
- Abstract要約: 本稿では,人工知能(AI)が複数の世代にまたがって進化していくことを提案する。
これらのAI世代は、アルゴリズム、計算能力、データ間の優先順位のシフトによって駆動される。
人工知能が人間のような自律性に近づいた(あるいはそうしようとする)ときに生じる、深い倫理的、規制的、哲学的な課題を探求する。
- 参考スコア(独自算出の注目度): 3.4440023363051266
- License:
- Abstract: This paper proposes that Artificial Intelligence (AI) progresses through several overlapping generations: AI 1.0 (Information AI), AI 2.0 (Agentic AI), AI 3.0 (Physical AI), and now a speculative AI 4.0 (Conscious AI). Each of these AI generations is driven by shifting priorities among algorithms, computing power, and data. AI 1.0 ushered in breakthroughs in pattern recognition and information processing, fueling advances in computer vision, natural language processing, and recommendation systems. AI 2.0 built on these foundations through real-time decision-making in digital environments, leveraging reinforcement learning and adaptive planning for agentic AI applications. AI 3.0 extended intelligence into physical contexts, integrating robotics, autonomous vehicles, and sensor-fused control systems to act in uncertain real-world settings. Building on these developments, AI 4.0 puts forward the bold vision of self-directed AI capable of setting its own goals, orchestrating complex training regimens, and possibly exhibiting elements of machine consciousness. This paper traces the historical foundations of AI across roughly seventy years, mapping how changes in technological bottlenecks from algorithmic innovation to high-performance computing to specialized data, have spurred each generational leap. It further highlights the ongoing synergies among AI 1.0, 2.0, 3.0, and 4.0, and explores the profound ethical, regulatory, and philosophical challenges that arise when artificial systems approach (or aspire to) human-like autonomy. Ultimately, understanding these evolutions and their interdependencies is pivotal for guiding future research, crafting responsible governance, and ensuring that AI transformative potential benefits society as a whole.
- Abstract(参考訳): 本稿では、AI 1.0(情報AI)、AI 2.0(エージェントAI)、AI 3.0(物理AI)、そして現在、投機的AI 4.0(意識AI)である。
これらのAI世代は、アルゴリズム、計算能力、データ間の優先順位のシフトによって駆動される。
AI 1.0は、パターン認識と情報処理の突破口となり、コンピュータビジョン、自然言語処理、レコメンデーションシステムの進歩を加速させた。
AI 2.0は、エージェントAIアプリケーションのための強化学習と適応計画を活用することで、デジタル環境におけるリアルタイムな意思決定を通じて、これらの基盤の上に構築されている。
AI 3.0はインテリジェンスを物理的なコンテキストに拡張し、ロボット、自動運転車、センサー融合制御システムを統合して、不確実な現実世界で動作させた。
これらの開発に基づいて、AI 4.0は、自身の目標を設定し、複雑なトレーニング体制を編成し、マシン意識の要素を提示することのできる、自己指揮型AIという大胆なビジョンを推進している。
本稿では、約70年間にわたるAIの歴史的基盤をトレースし、アルゴリズムの革新から高性能コンピューティング、特殊データへの技術的ボトルネックの変化が、それぞれの世代を飛躍させたかのマッピングを行う。
さらに、AI 1.0、2.0、3.0、および4.0の継続的な相乗効果を強調し、人工システムによる人間のような自律性へのアプローチ(あるいはその意図)で生じる、深い倫理的、規制的、哲学的な課題を探求する。
究極的には、これらの進化とその相互依存を理解することは、将来の研究を指導し、責任あるガバナンスを作り、AIが社会全体に変革をもたらす可能性を保証するために重要である。
関連論文リスト
- The Rise and Fall(?) of Software Engineering [3.89270408835787]
ソフトウェア工学へのAIのスムーズな統合に不可欠な重要な要素を概説することを目指している。
まず、SEとAIの進化について簡単に説明する。その後、AI駆動の自動化と人間のイノベーションの間の複雑な相互作用を掘り下げる。
論文 参考訳(メタデータ) (2024-06-14T15:50:24Z) - Towards Bidirectional Human-AI Alignment: A Systematic Review for Clarifications, Framework, and Future Directions [101.67121669727354]
近年のAIの進歩は、AIシステムを意図された目標、倫理的原則、個人とグループの価値に向けて導くことの重要性を強調している。
人間のAIアライメントの明確な定義とスコープの欠如は、このアライメントを達成するための研究領域間の共同作業を妨げる、大きな障害となる。
我々は、2019年から2024年1月までに400以上の論文を体系的にレビューし、HCI(Human-Computer Interaction)、自然言語処理(NLP)、機械学習(ML)といった複数の分野にまたがって紹介する。
論文 参考訳(メタデータ) (2024-06-13T16:03:25Z) - Visions of a Discipline: Analyzing Introductory AI Courses on YouTube [11.209406323898019]
われわれはYouTubeで最も視聴された20のAIコースを分析した。
導入型AIコースは、AIの倫理的または社会的課題に有意義に関わっていない。
我々は、よりバランスのとれた視点を示すために、AIの倫理的課題を強調しておくことを推奨する。
論文 参考訳(メタデータ) (2024-05-31T01:48:42Z) - Advancing Explainable AI Toward Human-Like Intelligence: Forging the
Path to Artificial Brain [0.7770029179741429]
説明可能なAI(XAI)における人工知能(AI)と神経科学の交差は、複雑な意思決定プロセスにおける透明性と解釈可能性を高めるために重要である。
本稿では,機能ベースから人間中心のアプローチまで,XAI方法論の進化について考察する。
生成モデルにおける説明可能性の達成、責任あるAIプラクティスの確保、倫理的意味への対処に関する課題について論じる。
論文 参考訳(メタデータ) (2024-02-07T14:09:11Z) - Exploration with Principles for Diverse AI Supervision [88.61687950039662]
次世代の予測を用いた大規模トランスフォーマーのトレーニングは、AIの画期的な進歩を生み出した。
この生成AIアプローチは印象的な結果をもたらしたが、人間の監督に大きく依存している。
この人間の監視への強い依存は、AIイノベーションの進歩に重大なハードルをもたらす。
本稿では,高品質なトレーニングデータを自律的に生成することを目的とした,探索型AI(EAI)という新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-10-13T07:03:39Z) - End-User Development for Artificial Intelligence: A Systematic
Literature Review [2.347942013388615]
エンドユーザ開発(EUD)は、AIベースのシステムを自分たちのニーズに合わせて作成、カスタマイズ、あるいは適用することができる。
本稿では,AIシステムにおけるEUDの現在の状況に光を当てることを目的とした文献レビューを紹介する。
論文 参考訳(メタデータ) (2023-04-14T09:57:36Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
我々は、AIライフサイクルにおけるロバストネスの課題を強調し、自動車のメンテナンスに類似させることで、AIのメンテナンスを動機付ける。
本稿では,ロバストネスリスクの検出と軽減を目的としたAIモデル検査フレームワークを提案する。
我々のAIメンテナンスの提案は、AIライフサイクル全体を通して堅牢性評価、状態追跡、リスクスキャン、モデル硬化、規制を促進する。
論文 参考訳(メタデータ) (2023-01-08T15:02:38Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2)は、AIレコメンデーションにユーザの信頼度を明確に定量化し視覚化する。
これにより、AIシステムの予測を調べてテストすることで、システムの意思決定に対する信頼の基盤を確立することができる。
論文 参考訳(メタデータ) (2022-01-26T18:53:09Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
我々は,信頼に値するAIを実現する上で最も重要な6つの要素,(i)安全とロバスト性,(ii)非差別と公正,(iii)説明可能性,(iv)プライバシー,(v)説明可能性と監査性,(vi)環境ウェルビーイングに焦点をあてる。
各次元について、分類学に基づく最近の関連技術について概観し、実世界のシステムにおけるそれらの応用を概説する。
論文 参考訳(メタデータ) (2021-07-12T14:21:46Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z) - Time for AI (Ethics) Maturity Model Is Now [15.870654219935972]
この記事では、AIソフトウェアはまだソフトウェアであり、ソフトウェア開発の観点からアプローチする必要がある、と論じる。
我々は、AI倫理に重点を置くべきか、それともより広く、AIシステムの品質に重点を置くべきかを議論したい。
論文 参考訳(メタデータ) (2021-01-29T17:37:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。