論文の概要: Stonefish: Supporting Machine Learning Research in Marine Robotics
- arxiv url: http://arxiv.org/abs/2502.11887v1
- Date: Mon, 17 Feb 2025 15:13:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 20:34:45.354175
- Title: Stonefish: Supporting Machine Learning Research in Marine Robotics
- Title(参考訳): Stonefish: 海洋ロボットにおける機械学習研究を支援する
- Authors: Michele Grimaldi, Patryk Cieslak, Eduardo Ochoa, Vibhav Bharti, Hayat Rajani, Ignacio Carlucho, Maria Koskinopoulou, Yvan R. Petillot, Nuno Gracias,
- Abstract要約: 本稿では,海洋ロボティクスソリューションの開発とテストを支援するオープンソースプラットフォームであるStonefishシミュレータの最近の拡張を強調した。
主なアップデートには、視覚光通信、テザリング操作のサポート、スラスタモデリングの改善、より柔軟な流体力学、ソナー精度の向上などが含まれる。
- 参考スコア(独自算出の注目度): 5.021710505685786
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Simulations are highly valuable in marine robotics, offering a cost-effective and controlled environment for testing in the challenging conditions of underwater and surface operations. Given the high costs and logistical difficulties of real-world trials, simulators capable of capturing the operational conditions of subsea environments have become key in developing and refining algorithms for remotely-operated and autonomous underwater vehicles. This paper highlights recent enhancements to the Stonefish simulator, an advanced open-source platform supporting development and testing of marine robotics solutions. Key updates include a suite of additional sensors, such as an event-based camera, a thermal camera, and an optical flow camera, as well as, visual light communication, support for tethered operations, improved thruster modelling, more flexible hydrodynamics, and enhanced sonar accuracy. These developments and an automated annotation tool significantly bolster Stonefish's role in marine robotics research, especially in the field of machine learning, where training data with a known ground truth is hard or impossible to collect.
- Abstract(参考訳): シミュレーションは海洋ロボット工学において非常に貴重であり、水中および地表での運用の困難な状況において、コスト効率が高く制御された環境を提供する。
実地試験のコストと物流の難しさを踏まえ、海底環境の運用状況を把握できるシミュレーターは、遠隔操作および自律型水中車両のアルゴリズムの開発と精錬の鍵となっている。
本稿では,海洋ロボティクスソリューションの開発とテストを支援する,高度なオープンソースプラットフォームであるStonefishシミュレータの最近の拡張を強調した。
主なアップデートには、イベントベースのカメラ、サーモカメラ、光学フローカメラなどの追加センサー群、視覚光通信、テザリング操作のサポート、スラスタモデリングの改善、より柔軟な流体力学、ソナー精度の向上などが含まれる。
これらの開発と自動アノテーションツールは、特に機械学習の分野において、ストーンフィッシュの海洋ロボット研究における役割を著しく加速させる。
関連論文リスト
- AI-Enhanced Automatic Design of Efficient Underwater Gliders [60.45821679800442]
自動設計フレームワークの構築は、グライダー形状を表現する複雑さと、複雑な固体-流体相互作用をモデル化する際の計算コストが高いため、困難である。
非自明な船体形状の水中ロボットを作れるようにすることで、これらの制限を克服するAI強化型自動計算フレームワークを導入する。
提案手法は, 形状と制御信号の両面を協調的に最適化するアルゴリズムで, 低次幾何表現と微分可能なニューラルネット型流体代理モデルを用いる。
論文 参考訳(メタデータ) (2025-04-30T23:55:44Z) - Learning Underwater Active Perception in Simulation [51.205673783866146]
タービディティは、検査された構造物の正確な視覚的記録を阻止する可能性があるため、ミッション全体を危険に晒す可能性がある。
従来の研究は、濁度や後方散乱に適応する手法を導入してきた。
本研究では, 広範囲の水環境下での高品質な画像取得を実現するための, 単純かつ効率的なアプローチを提案する。
論文 参考訳(メタデータ) (2025-04-23T06:48:38Z) - Unreal Robotics Lab: A High-Fidelity Robotics Simulator with Advanced Physics and Rendering [4.760567755149477]
本稿では,Unreal Engineの高度なレンダリング機能とMuJoCoの高精度物理シミュレーションを統合する新しいシミュレーションフレームワークを提案する。
我々のアプローチは、正確な物理的相互作用を維持しながら、現実的なロボット知覚を可能にする。
フレームワーク内のビジュアルナビゲーションとSLAMメソッドをベンチマークし、制御されながら多様なシナリオで実世界のロバスト性をテストするための実用性を実証する。
論文 参考訳(メタデータ) (2025-04-19T01:54:45Z) - Taccel: Scaling Up Vision-based Tactile Robotics via High-performance GPU Simulation [50.34179054785646]
ロボット,触覚センサ,物体を精度と前例のない速度でモデル化するために,IPCとABDを統合した高性能なシミュレーションプラットフォームであるTaccelを提案する。
Taccelは正確な物理シミュレーションとリアルな触覚信号を提供し、ユーザフレンドリーなAPIを通じて柔軟なロボットセンサー構成をサポートする。
これらの能力は、触覚ロボットの研究と開発を拡大するための強力なツールとして、Taccelを位置づけている。
論文 参考訳(メタデータ) (2025-04-17T12:57:11Z) - Deep Learning-Enhanced Visual Monitoring in Hazardous Underwater Environments with a Swarm of Micro-Robots [8.38975683806005]
水中貯蔵施設のような極端な環境の監視と探索は、コストが高く、労働集約的で危険である。
本稿では,複数時間深層学習ネットワークを統合し,協調予測と画像再構成を行う新しい手法を提案する。
その結果,座標予測精度と画像の集合性が非常に高く,本手法の現実的適用性を示している。
論文 参考訳(メタデータ) (2025-03-04T16:19:06Z) - Underwater Soft Fin Flapping Motion with Deep Neural Network Based Surrogate Model [0.31457219084519]
本研究では、深部ニューラルネットワーク(DNN)に基づく代理モデルと強化学習(RL)を組み合わせることにより、フィン作動型水中ロボットの精密力制御のための新しい枠組みを提案する。
水中環境との複雑な相互作用と高い実験コストに対処するため、代理モデルがRLエージェントの効率的な訓練を可能にするシミュレータとして機能する。
論文 参考訳(メタデータ) (2025-02-05T12:57:53Z) - Towards an Autonomous Surface Vehicle Prototype for Artificial Intelligence Applications of Water Quality Monitoring [68.41400824104953]
本稿では,人工知能アルゴリズムの利用と水質モニタリングのための高感度センシング技術に対処する車両プロトタイプを提案する。
車両には水質パラメータと水深を測定するための高品質なセンサーが装備されている。
ステレオカメラにより、実際の環境でのマクロプラスチックの検出と検出も可能である。
論文 参考訳(メタデータ) (2024-10-08T10:35:32Z) - Learning Adaptive Hydrodynamic Models Using Neural ODEs in Complex Conditions [9.392180262607921]
強化学習に基づく四足歩行ロボットは、様々な地形を横断するが、水中で泳ぐ能力は乏しい。
本稿では,水陸両用四足歩行ロボットのためのデータ駆動型流体力学モデルの開発と評価について述べる。
論文 参考訳(メタデータ) (2024-10-01T08:18:36Z) - ODYSSEE: Oyster Detection Yielded by Sensor Systems on Edge Electronics [14.935296890629795]
オイスターは沿岸生態系において重要なキーストーンであり、経済的、環境的、文化的な利益をもたらす。
現在の監視戦略は、しばしば破壊的な方法に依存している。
本研究では, 安定拡散を用いた新しいパイプラインを提案し, 現実的な合成データを用いて収集した実データセットを増強する。
論文 参考訳(メタデータ) (2024-09-11T04:31:09Z) - Gaussian Splatting to Real World Flight Navigation Transfer with Liquid Networks [93.38375271826202]
本研究では,シミュレート・トゥ・リアルな視覚四重項ナビゲーションタスクにおける分布シフトに対する一般化とロバスト性を改善する手法を提案する。
まず,擬似飛行力学とガウススプラッティングを統合してシミュレータを構築し,その後,液状ニューラルネットワークを用いてロバストなナビゲーションポリシーを訓練する。
このようにして、我々は3次元ガウススプラッティングラディアンス場レンダリング、専門家による実演訓練データのプログラミング、およびLiquid Networkのタスク理解能力の進歩を組み合わせたフルスタックの模倣学習プロトコルを得る。
論文 参考訳(メタデータ) (2024-06-21T13:48:37Z) - Aquatic Navigation: A Challenging Benchmark for Deep Reinforcement Learning [53.3760591018817]
ゲームエンジンとDeep Reinforcement Learningの統合の最近の進歩を利用して,水上ナビゲーションのための新しいベンチマーク環境を提案する。
具体的には、最も広く受け入れられているアルゴリズムの一つであるPPOに着目し、先進的なトレーニング手法を提案する。
実験により,これらの成分をうまく組み合わせることで,有望な結果が得られることが示された。
論文 参考訳(メタデータ) (2024-05-30T23:20:23Z) - Reinforcement-learning robotic sailboats: simulator and preliminary
results [0.37918614538294315]
この研究は、無人表面車両(USV)デジタルツインを用いた実実験を再現する仮想海洋環境の開発における主な課題と課題に焦点を当てる。
本稿では、自律的なナビゲーションと制御のために強化学習(RL)エージェントを利用することを考慮し、仮想世界を構築するための重要な機能を紹介する。
論文 参考訳(メタデータ) (2024-01-16T09:04:05Z) - Autoencoding a Soft Touch to Learn Grasping from On-land to Underwater [17.27917150366665]
本研究は,視覚を用いたソフトロボット指による陸上から水中への知識の伝達可能性について検討した。
高フレームのカメラが全身の変形を捉え、ソフトロボットの指が地上や水中の物理的物体と相互作用する。
その結果,訓練されたSVAEモデルは,陸から水へ移動可能なソフトメカニックの一連の潜伏表現を学習した。
論文 参考訳(メタデータ) (2023-08-16T17:07:37Z) - Deep Learning for Real Time Satellite Pose Estimation on Low Power Edge
TPU [58.720142291102135]
本稿では,ニューラルネットワークアーキテクチャを利用したポーズ推定ソフトウェアを提案する。
我々は、低消費電力の機械学習アクセラレーターが宇宙での人工知能の活用を可能にしていることを示す。
論文 参考訳(メタデータ) (2022-04-07T08:53:18Z) - Autonomous Aerial Robot for High-Speed Search and Intercept Applications [86.72321289033562]
高速物体把握のための完全自律飛行ロボットが提案されている。
追加のサブタスクとして、我々のシステムは、表面に近い極にある気球を自律的にピアスすることができる。
我々のアプローチは、挑戦的な国際競争で検証され、優れた結果が得られました。
論文 参考訳(メタデータ) (2021-12-10T11:49:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。