論文の概要: Predicting Next-Day Wildfire Spread with Time Series and Attention
- arxiv url: http://arxiv.org/abs/2502.12003v1
- Date: Mon, 17 Feb 2025 16:41:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 20:34:45.422003
- Title: Predicting Next-Day Wildfire Spread with Time Series and Attention
- Title(参考訳): 時系列と注意による次世代の山火事の予測
- Authors: Saad Lahrichi, Jesse Johnson, Jordan Malof,
- Abstract要約: 翌日の山火事予測のために,SwinUnetと呼ばれる変圧器モデルについて検討した。
WildfireSpreadTSの現在の最先端モデルに対して、Swinベースのモデルをベンチマークする。
適切な修正によって、SwinUnetは1日と複数日の両方のシナリオに対して、翌日の予測において最先端の精度を達成する。
- 参考スコア(独自算出の注目度): 1.6385815610837162
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent research has demonstrated the potential of deep neural networks (DNNs) to accurately predict next-day wildfire spread, based upon the current extent of a fire and geospatial rasters of influential environmental covariates e.g., vegetation, topography, climate, and weather. In this work, we investigate a recent transformer-based model, termed the SwinUnet, for next-day wildfire prediction. We benchmark Swin-based models against several current state-of-the-art models on WildfireSpreadTS (WFTS), a large public benchmark dataset of historical wildfire events. We consider two next-day fire prediction scenarios: when the model is given input of (i) a single previous day of data, or (ii) five previous days of data. We find that, with the proper modifications, SwinUnet achieves state-of-the-art accuracy on next-day prediction for both the single-day and multi-day scenarios. SwinUnet's success depends heavily upon utilizing pre-trained weights from ImageNet. Consistent with prior work, we also found that models with multi-day-input always outperformed models with single-day input.
- Abstract(参考訳): 近年の研究では, 植生, 地形, 気候, 気象といった影響のある環境共変元素の火災と空間的ラスタの現在の範囲に基づいて, 翌日の山火事の拡散を正確に予測するディープニューラルネットワーク(DNN)の可能性を実証している。
本研究では,SwinUnetと呼ばれる最近の変圧器モデルを用いて,翌日の山火事予測を行う。
歴史的山火事の大規模ベンチマークデータセットであるWildfireSpreadTS (WFTS)上で、Swinベースのモデルを現在の最先端モデルと比較した。
我々は次の2つの火災予測シナリオについて考察する:モデルが入力されたとき
(i)データの1日前日又は
(ii)前回の5日間のデータ。
適切な修正によって、SwinUnetは1日と複数日の両方のシナリオに対して、翌日の予測において最先端の精度を達成する。
SwinUnetの成功は、ImageNetからトレーニング済みの重みを利用することに大きく依存している。
先行研究と一致して、マルチデイインプットを持つモデルは常にシングルデイインプットを持つモデルよりも優れていた。
関連論文リスト
- Tackling Data Heterogeneity in Federated Time Series Forecasting [61.021413959988216]
時系列予測は、エネルギー消費予測、病気の伝染モニタリング、天気予報など、様々な実世界の応用において重要な役割を果たす。
既存のほとんどのメソッドは、分散デバイスから中央クラウドサーバに大量のデータを収集する、集中的なトレーニングパラダイムに依存しています。
本稿では,情報合成データを補助的知識キャリアとして生成することにより,データの均一性に対処する新しいフレームワークであるFed-TRENDを提案する。
論文 参考訳(メタデータ) (2024-11-24T04:56:45Z) - GIFT-Eval: A Benchmark For General Time Series Forecasting Model Evaluation [90.53485251837235]
時系列基礎モデルはゼロショット予測に優れ、明示的なトレーニングなしで多様なタスクを処理する。
GIFT-Evalは、多様なデータセットに対する評価を促進するための先駆的なベンチマークである。
GIFT-Evalには、144,000の時系列と17700万のデータポイントの23のデータセットが含まれている。
論文 参考訳(メタデータ) (2024-10-14T11:29:38Z) - Unified Training of Universal Time Series Forecasting Transformers [104.56318980466742]
マスク型ユニバーサル時系列予測変換器(モイライ)について述べる。
Moiraiは、新たに導入された大規模オープンタイムシリーズアーカイブ(LOTSA)で訓練されており、9つのドメインで27億以上の観測が行われた。
Moiraiは、フルショットモデルと比較してゼロショットの予測器として、競争力や優れたパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-02-04T20:00:45Z) - Lag-Llama: Towards Foundation Models for Probabilistic Time Series
Forecasting [54.04430089029033]
本稿では,デコーダのみの変換器アーキテクチャに基づく時系列予測のための汎用基礎モデルであるLag-Llamaを提案する。
Lag-Llamaは、複数のドメインからの多様な時系列データの大規模なコーパスで事前訓練され、強力なゼロショット一般化能力を示す。
このような未確認データセットの比較的小さな部分で微調整を行うと、Lag-Llamaは最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-10-12T12:29:32Z) - Pushing the Limits of Pre-training for Time Series Forecasting in the
CloudOps Domain [54.67888148566323]
クラウドオペレーションドメインから,大規模時系列予測データセットを3つ導入する。
強力なゼロショットベースラインであり、モデルとデータセットサイズの両方において、さらなるスケーリングの恩恵を受けています。
これらのデータセットと結果を取得することは、古典的および深層学習のベースラインを事前訓練された方法と比較した総合的なベンチマーク結果の集合である。
論文 参考訳(メタデータ) (2023-10-08T08:09:51Z) - Unified Long-Term Time-Series Forecasting Benchmark [0.6526824510982802]
本稿では,時系列予測のための包括的データセットを提案する。
多様な動的システムと実生活記録から得られたデータセットのコレクションを組み込んだ。
多様なシナリオにおいて最も効果的なモデルを決定するために、古典的および最先端のモデルを用いて広範なベンチマーク分析を行う。
本研究は,これらのモデルの性能比較を興味深いものにし,モデルの有効性のデータセット依存性を強調した。
論文 参考訳(メタデータ) (2023-09-27T18:59:00Z) - FrAug: Frequency Domain Augmentation for Time Series Forecasting [6.508992154478217]
データ拡張(DA)は、ディープラーニングのためのトレーニングデータサイズを拡張するデファクトソリューションになっています。
本稿では、予測における拡張データ-ラベルペアのセマンティック一貫性を保証するための、単純で効果的な周波数領域拡張手法を提案する。
その結果,ほとんどの場合,FrAugはTSFモデルの予測精度を高めることができることがわかった。
論文 参考訳(メタデータ) (2023-02-18T11:25:42Z) - Wildfire Forecasting with Satellite Images and Deep Generative Model [0.0]
我々は、未来における火災がどのように振る舞うかを予想するビデオとして、一連の山火事の画像を使用します。
潜在空間で動的に駆動される新しい時間モデルを導入する。
結果は様々なベンチマークモデルに比較される。
論文 参考訳(メタデータ) (2022-08-19T15:52:43Z) - CEP3: Community Event Prediction with Neural Point Process on Graph [59.434777403325604]
グラフニューラルネットワークとマーク付き時間点プロセス(MTPP)を組み合わせた新しいモデルを提案する。
実験では,モデルの精度と訓練効率の両面から,モデルの優れた性能を実証した。
論文 参考訳(メタデータ) (2022-05-21T15:30:25Z) - Next Day Wildfire Spread: A Machine Learning Data Set to Predict
Wildfire Spreading from Remote-Sensing Data [5.814925201882753]
Next Day Wildfire Spread」は、アメリカ全土で10年近くにわたってリモートセンシングされたデータを収集した、歴史的な山火事の収集データである。
我々は、このデータの空間情報を利用して、山火事の拡散を予測する畳み込みオートエンコーダを実装した。
このデータセットは、リモートセンシングデータに基づく1日のリードタイムに基づく山火事伝播モデル開発のためのベンチマークとして使用することができる。
論文 参考訳(メタデータ) (2021-12-04T23:28:44Z) - Learning Wildfire Model from Incomplete State Observations [0.0]
我々は、深層ニューラルネットワークを用いて、米国西部の5か所の将来の山火事予測のための動的モデルを作成します。
提案モデルには,動的オンライン推定や時系列モデリングなど,予測評価における特徴的ニーズに対処する特徴がある。
論文 参考訳(メタデータ) (2021-11-28T03:21:46Z) - Feature-weighted Stacking for Nonseasonal Time Series Forecasts: A Case
Study of the COVID-19 Epidemic Curves [0.0]
本研究では,非シーズン時間帯での利用可能性について,予測におけるアンサンブル手法について検討する。
予備予測段階における予測能力を証明する2つの予測モデルと2つのメタ機能からなる重畳アンサンブルを用いて遅延データ融合を提案する。
論文 参考訳(メタデータ) (2021-08-19T14:44:46Z) - Improving Event Duration Prediction via Time-aware Pre-training [90.74988936678723]
持続時間予測に有効な2つのモデルを提案する。
1つのモデルは、期間値が該当する範囲/単位を予測し(R−pred)、もう1つのモデルは正確な期間値E−predを予測する。
我々の最良のモデル -- E-pred は、以前の作業よりも大幅に優れ、R-pred よりも正確に持続時間情報をキャプチャします。
論文 参考訳(メタデータ) (2020-11-05T01:52:11Z) - Modeling Wildfire Perimeter Evolution using Deep Neural Networks [0.0]
本研究では,24時間間における山火事周囲の進化を予測できる山火事拡散モデルを提案する。
このモデルはカリフォルニアのシエラネバダ山脈西部の山火事から、実際の歴史的データセットから、山火事の拡散力学を学習することができる。
論文 参考訳(メタデータ) (2020-09-08T20:06:01Z) - Improving the Accuracy of Global Forecasting Models using Time Series
Data Augmentation [7.38079566297881]
GFM(Global Forecasting Models)として知られる多くの時系列のセットでトレーニングされた予測モデルは、競争や実世界のアプリケーションを予測する上で有望な結果を示している。
本稿では,GFMモデルのベースライン精度を向上させるための,データ拡張に基づく新しい予測フレームワークを提案する。
論文 参考訳(メタデータ) (2020-08-06T13:52:20Z) - Ambiguity in Sequential Data: Predicting Uncertain Futures with
Recurrent Models [110.82452096672182]
逐次データによる曖昧な予測を扱うために,Multiple hypothesis Prediction(MHP)モデルの拡張を提案する。
また、不確実性を考慮するのに適した曖昧な問題に対する新しい尺度も導入する。
論文 参考訳(メタデータ) (2020-03-10T09:15:42Z) - A Multi-Channel Neural Graphical Event Model with Negative Evidence [76.51278722190607]
イベントデータセットは、タイムライン上で不規則に発生するさまざまなタイプのイベントのシーケンスである。
基礎となる強度関数を推定するために,非パラメトリックディープニューラルネットワーク手法を提案する。
論文 参考訳(メタデータ) (2020-02-21T23:10:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。