論文の概要: LocalEscaper: A Weakly-supervised Framework with Regional Reconstruction for Scalable Neural TSP Solvers
- arxiv url: http://arxiv.org/abs/2502.12484v1
- Date: Tue, 18 Feb 2025 03:10:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-19 14:08:01.384754
- Title: LocalEscaper: A Weakly-supervised Framework with Regional Reconstruction for Scalable Neural TSP Solvers
- Title(参考訳): LocalEscaper: スケーラブルなニューラルネットワークTSPソリューションのための局所再構成を備えた弱教師付きフレームワーク
- Authors: Junrui Wen, Yifei Li, Bart Selman, Kun He,
- Abstract要約: LocalEscaperは、大規模トラベリングセールスマン問題(TSP)のための弱い教師付き学習フレームワークである
SLとRLの両方の利点を効果的に組み合わせ、低品質なラベルを持つデータセットの効果的なトレーニングを可能にします。
最大5万の都市でTSPインスタンスを解決し、スケーラビリティと効率のベンチマークを新たに設定する。
- 参考スコア(独自算出の注目度): 14.238953745477193
- License:
- Abstract: Neural solvers have shown significant potential in solving the Traveling Salesman Problem (TSP), yet current approaches face significant challenges. Supervised learning (SL)-based solvers require large amounts of high-quality labeled data, while reinforcement learning (RL)-based solvers, though less dependent on such data, often suffer from inefficiencies. To address these limitations, we propose LocalEscaper, a novel weakly-supervised learning framework for large-scale TSP. LocalEscaper effectively combines the advantages of both SL and RL, enabling effective training on datasets with low-quality labels. To further enhance solution quality, we introduce a regional reconstruction strategy, which mitigates the problem of local optima, a common issue in existing local reconstruction methods. Additionally, we propose a linear-complexity attention mechanism that reduces computational overhead, enabling the efficient solution of large-scale TSPs without sacrificing performance. Experimental results on both synthetic and real-world datasets demonstrate that LocalEscaper outperforms existing neural solvers, achieving state-of-the-art results. Notably, it sets a new benchmark for scalability and efficiency, solving TSP instances with up to 50,000 cities.
- Abstract(参考訳): ニューラルソルバはトラベリングセールスマン問題(TSP)の解決に大きな可能性を示しているが、現在のアプローチでは大きな課題に直面している。
教師付き学習(SL)ベースの解法は大量の高品質なラベル付きデータを必要とするが、強化学習(RL)ベースの解法はそのようなデータに依存しないが、しばしば非効率に悩まされる。
これらの制約に対処するため,大規模TSPのための新しい弱教師付き学習フレームワークであるLocalEscaperを提案する。
LocalEscaperは、SLとRLの両方の利点を効果的に組み合わせ、低品質ラベルを持つデータセットの効果的なトレーニングを可能にする。
ソリューションの質をさらに高めるため,既存の局所的再構築手法における共通問題である局所最適問題を緩和する地域的再構築戦略を導入する。
さらに,計算オーバーヘッドを低減し,性能を犠牲にすることなく大規模TSPの効率的な解を実現できる線形複雑注意機構を提案する。
合成データセットと実世界のデータセットの両方の実験結果は、LocalEscaperが既存のニューラルソルバより優れており、最先端の結果が得られていることを示している。
特に、スケーラビリティと効率性に関する新しいベンチマークを設定し、最大5万の都市でTSPインスタンスを解決している。
関連論文リスト
- Heterogeneity-Aware Resource Allocation and Topology Design for Hierarchical Federated Edge Learning [9.900317349372383]
Federated Learning (FL)は、モバイルデバイス上で機械学習モデルをトレーニングするためのプライバシー保護フレームワークを提供する。
従来のFLアルゴリズム、例えばFedAvgはこれらのデバイスに重い通信負荷を課す。
エッジデバイスをエッジサーバに接続し,エッジサーバをピアツーピア(P2P)エッジバックホールを介して相互接続する2層HFELシステムを提案する。
我々の目標は、戦略的資源配分とトポロジ設計により、HFELシステムの訓練効率を向上させることである。
論文 参考訳(メタデータ) (2024-09-29T01:48:04Z) - Offline Reinforcement Learning for Learning to Dispatch for Job Shop Scheduling [0.9831489366502301]
ジョブショップスケジューリング問題(JSSP)は複雑な最適化問題である。
オンライン強化学習(RL)は、JSSPの許容可能なソリューションを素早く見つけることで、有望であることを示している。
オフライン強化学習による分散学習(Offline-LD)について紹介する。
論文 参考訳(メタデータ) (2024-09-16T15:18:10Z) - Decision Transformer for Enhancing Neural Local Search on the Job Shop Scheduling Problem [10.316443594063173]
ジョブショップスケジューリング問題(JSSP)とその解法アルゴリズムは、何十年もの間、アカデミックと産業の両方に永続的な関心を集めてきた。
近年、機械学習(ML)は、JSSPのための既存のソリューションと新しいソリューションの構築において、より短い時間でより良いソリューションを見つけることを目的として、ますます重要な役割を担っている。
我々は、JSSP上の大規模局所探索を効率よく効果的に制御できる、Neural Local Search(NLS)と呼ばれる最先端の深層強化学習(DRL)エージェントの上に構築する。
論文 参考訳(メタデータ) (2024-09-04T13:33:38Z) - Locally Estimated Global Perturbations are Better than Local Perturbations for Federated Sharpness-aware Minimization [81.32266996009575]
フェデレートラーニング(FL)では、クライアント間の複数ステップの更新とデータの均一性が、よりシャープなミニマによるロスランドスケープにつながることが多い。
クライアント側におけるグローバルな摂動方向を局所的に推定する新しいアルゴリズムであるFedLESAMを提案する。
論文 参考訳(メタデータ) (2024-05-29T08:46:21Z) - A Neuromorphic Architecture for Reinforcement Learning from Real-Valued
Observations [0.34410212782758043]
強化学習(RL)は複雑な環境における意思決定のための強力なフレームワークを提供する。
本稿では,実測値を用いてRL問題を解くための新しいスパイキングニューラルネットワーク(SNN)アーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-07-06T12:33:34Z) - Solving Large-scale Spatial Problems with Convolutional Neural Networks [88.31876586547848]
大規模空間問題に対する学習効率を向上させるために移動学習を用いる。
畳み込みニューラルネットワーク (CNN) は, 信号の小さな窓で訓練できるが, 性能劣化の少ない任意の大信号で評価できる。
論文 参考訳(メタデータ) (2023-06-14T01:24:42Z) - Pointerformer: Deep Reinforced Multi-Pointer Transformer for the
Traveling Salesman Problem [67.32731657297377]
トラベリングセールスマン問題(TSP)は、もともと輸送と物流の領域で発生した古典的な経路最適化問題である。
近年, 深層強化学習は高い推論効率のため, TSP の解法として採用されている。
本稿では,多点変換器をベースとした新しいエンドツーエンドDRL手法であるPointerformerを提案する。
論文 参考訳(メタデータ) (2023-04-19T03:48:32Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
画像超解像(SR)は、CNNからトランスフォーマーアーキテクチャへの広範なニューラルネットワーク設計を目撃している。
本研究は,市販のネットワーク設計を生かし,基礎となる計算オーバーヘッドを低減するため,超高解像度イテレーションにおけるネットワークプルーニングの可能性について検討する。
本研究では, ランダムネットワークのスパース構造を最適化し, 重要でない重みを小さめに微調整することにより, 反復型軟収縮率(ISS-P)法を提案する。
論文 参考訳(メタデータ) (2023-03-16T21:06:13Z) - Effective Self-supervised Pre-training on Low-compute Networks without
Distillation [6.530011859253459]
報告された自己教師型学習のパフォーマンスは、標準的な教師付き事前学習よりも大きなマージンで遅れている。
以前の作業のほとんどは、低スループットネットワークのキャパシティボトルネックによるパフォーマンスの低下を理由としている。
我々は、現実的な制約の原因となる有害要因と、それらが自己監督型低コンプット設定に固有のものであるかどうかについて、より詳しく検討する。
論文 参考訳(メタデータ) (2022-10-06T10:38:07Z) - Deep Adaptive Inference Networks for Single Image Super-Resolution [72.7304455761067]
シングルイメージ超解像(SISR)は、ディープ畳み込みニューラルネットワーク(CNN)の展開により、近年大きく進歩している。
本稿では,深部SISR(AdaDSR)の適応型推論ネットワークを活用することで,この問題に対処する。
我々のAdaDSRは、SISRモデルをバックボーンとし、画像の特徴とリソース制約を入力として取り、ローカルネットワーク深さのマップを予測する軽量アダプタモジュールを備える。
論文 参考訳(メタデータ) (2020-04-08T10:08:20Z) - Large-Scale Gradient-Free Deep Learning with Recursive Local
Representation Alignment [84.57874289554839]
大規模データセット上でディープニューラルネットワークをトレーニングするには、重要なハードウェアリソースが必要である。
これらのネットワークをトレーニングするためのワークホースであるバックプロパゲーションは、本質的に並列化が難しいシーケンシャルなプロセスである。
本稿では、深層ネットワークのトレーニングに使用できるバックプロップに代わる、神経生物学的に有望な代替手段を提案する。
論文 参考訳(メタデータ) (2020-02-10T16:20:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。