論文の概要: ExLLM: Experience-Enhanced LLM Optimization for Molecular Design and Beyond
- arxiv url: http://arxiv.org/abs/2502.12845v4
- Date: Wed, 08 Oct 2025 09:32:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-09 14:21:17.943209
- Title: ExLLM: Experience-Enhanced LLM Optimization for Molecular Design and Beyond
- Title(参考訳): ExLLM: LLMによる分子設計の最適化
- Authors: Nian Ran, Yue Wang, Xiaoyuan Zhang, Zhongzheng Li, Qingsong Ran, Wenhao Li, Richard Allmendinger,
- Abstract要約: 3 つのコンポーネントを持つ LLM-as-optimizer フレームワークである ExLLM (Experience-Enhanced LLM Optimization) を導入する。
ExLLMはPMOに新しい最先端の結果をセットし、我々の設定を強く一般化する。
- 参考スコア(独自算出の注目度): 16.374785306736474
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Molecular design involves an enormous and irregular search space, where traditional optimizers such as Bayesian optimization, genetic algorithms, and generative models struggle to leverage expert knowledge or handle complex feedback. Recently, LLMs have been used as optimizers, achieving promising results on benchmarks such as PMO. However, existing approaches rely only on prompting or extra training, without mechanisms to handle complex feedback or maintain scalable memory. In particular, the common practice of appending or summarizing experiences at every query leads to redundancy, degraded exploration, and ultimately poor final outcomes under large-scale iterative search. We introduce ExLLM (Experience-Enhanced LLM optimization), an LLM-as-optimizer framework with three components: (1) a compact, evolving experience snippet tailored to large discrete spaces that distills non-redundant cues and improves convergence at low cost; (2) a simple yet effective k-offspring scheme that widens exploration per call and reduces orchestration cost; and (3) a lightweight feedback adapter that normalizes objectives for selection while formatting constraints and expert hints for iteration. ExLLM sets new state-of-the-art results on PMO and generalizes strongly in our setup, it sets records on circle packing and stellarator design, and yields consistent gains across additional domains requiring only a task-description template and evaluation functions to transfer.
- Abstract(参考訳): 分子設計には巨大な不規則な探索空間があり、ベイズ最適化、遺伝的アルゴリズム、生成モデルといった伝統的な最適化者は、専門家の知識を活用したり複雑なフィードバックを処理するのに苦労する。
近年、LPMは最適化として使われ、PMOなどのベンチマークで有望な結果が得られている。
しかし、既存のアプローチは、複雑なフィードバックを処理したり、スケーラブルなメモリを維持するメカニズムなしで、トレーニングの促進や追加にのみ依存している。
特に、全てのクエリで経験を付加または要約する一般的な実践は、冗長性、劣化した探索、そして究極的には大規模な反復探索の最終的な結果に繋がる。
我々は,(1)非冗長なキューを蒸留し,低コストで収束を向上する大規模離散空間に適した,コンパクトで進化した体験スニペット,(2)呼び出し毎に探索を拡大し,オーケストレーションコストを低減させるシンプルなk-offspringスキーム,(3)制約をフォーマットしながら選択の目的を正規化する軽量フィードバックアダプタ,の3つのコンポーネントを備えたLCM-as-optimizerフレームワークについて紹介する。
ExLLMはPMOに新たな最先端結果を設定し、我々の設定を強く一般化し、円パッキングとステラレータの設計に記録を設定し、タスク記述テンプレートのみを必要とする追加ドメイン間で一貫した利得を得る。
関連論文リスト
- Mixture of Experts in Large Language Models [3.1494372222592224]
MoEアーキテクチャは、最小の計算オーバーヘッドを維持しながら、モデルパフォーマンスを大幅に向上させる。
本分析では,モデルキャパシティの向上,タスク固有性能の向上,モデルキャパシティの効率向上など,MoEの重要なメリットを明らかにした。
このレビューでは、現在の研究の制限、オープンな課題、将来的な方向性について概説し、MoEアーキテクチャとそのアプリケーションにおける継続的なイノベーションの基礎を提供する。
論文 参考訳(メタデータ) (2025-07-15T10:36:43Z) - PharMolixFM: All-Atom Foundation Models for Molecular Modeling and Generation [4.402280157389038]
我々は全原子基盤モデルを構築するための統一フレームワークであるPharMolixFMを提案する。
我々のフレームワークは、最先端のマルチモーダル生成モデルを用いた3つの変種を含む。
PharMolixFM-Diffはタンパク質-小分子ドッキングにおける競合予測精度を実現する。
論文 参考訳(メタデータ) (2025-03-12T12:53:43Z) - Collaborative Expert LLMs Guided Multi-Objective Molecular Optimization [51.104444856052204]
我々は,多目的分子最適化のための協調型大規模言語モデル(LLM)システムであるMultiMolを提案する。
6つの多目的最適化タスクに対する評価において、MultiMolは既存の手法を著しく上回り、82.30%の成功率を達成した。
論文 参考訳(メタデータ) (2025-03-05T13:47:55Z) - Nature Language Model: Deciphering the Language of Nature for Scientific Discovery [105.55751854768297]
基礎モデルは自然言語処理と人工知能に革命をもたらした。
本研究では,科学発見のためのシーケンスベース科学基盤モデルであるNatureLMを紹介する。
論文 参考訳(メタデータ) (2025-02-11T13:08:03Z) - Efficient and Effective Weight-Ensembling Mixture of Experts for Multi-Task Model Merging [111.8456671452411]
マルチタスク学習(MTL)は、共有モデルを利用して複数のタスクを遂行し、知識伝達を促進する。
マルチタスクモデル統合のためのウェイトエンセブリング・ミックス・オブ・エキスパート(WEMoE)手法を提案する。
WEMoEとE-WEMoEは, MTL性能, 一般化, 堅牢性の観点から, 最先端(SOTA)モデルマージ法より優れていることを示す。
論文 参考訳(メタデータ) (2024-10-29T07:16:31Z) - MMEvol: Empowering Multimodal Large Language Models with Evol-Instruct [148.39859547619156]
我々は,新しいマルチモーダル命令データ進化フレームワークであるMMEvolを提案する。
MMEvolは、きめ細かい知覚、認知的推論、相互作用の進化の洗練された組み合わせによって、データ品質を反復的に改善する。
提案手法は,9つのタスクにおいて,最先端モデルに比べて有意に少ない精度でSOTA(State-of-the-art)性能を実現する。
論文 参考訳(メタデータ) (2024-09-09T17:44:00Z) - Many-Shot In-Context Learning for Molecular Inverse Design [56.65345962071059]
大規模言語モデル(LLM)は、数ショットのインコンテキスト学習(ICL)において、優れたパフォーマンスを示している。
マルチショットICLで利用可能な実験データの不足を克服する,新しい半教師付き学習手法を開発した。
示すように、この新しい手法は、既存の分子設計のためのICL法を大幅に改善し、科学者にとってアクセスしやすく、使いやすくする。
論文 参考訳(メタデータ) (2024-07-26T21:10:50Z) - Improving Molecular Modeling with Geometric GNNs: an Empirical Study [56.52346265722167]
本稿では,異なる標準化手法,(2)グラフ作成戦略,(3)補助的なタスクが性能,拡張性,対称性の強制に与える影響に焦点をあてる。
本研究の目的は,分子モデリングタスクに最適なモデリングコンポーネントの選択を研究者に案内することである。
論文 参考訳(メタデータ) (2024-07-11T09:04:12Z) - Efficient Evolutionary Search Over Chemical Space with Large Language Models [31.31899988523534]
最適化の目的は区別できない。
化学対応大規模言語モデル(LLM)を進化的アルゴリズムに導入する。
我々のアルゴリズムは最終解の質と収束速度の両方を改善する。
論文 参考訳(メタデータ) (2024-06-23T06:22:49Z) - Latent Chemical Space Searching for Plug-in Multi-objective Molecule Generation [9.442146563809953]
本研究では, 標的親和性, 薬物類似性, 合成性に関連する目的を組み込んだ, 汎用的な「プラグイン」分子生成モデルを構築した。
我々はPSO-ENPを多目的分子生成と最適化のための最適変種として同定する。
論文 参考訳(メタデータ) (2024-04-10T02:37:24Z) - Instruction Multi-Constraint Molecular Generation Using a Teacher-Student Large Language Model [49.64512917330373]
本稿では,学生に類似した多制約分子生成大言語モデルTSMMGを紹介する。
TSMMGを訓練するために、これらの「教師」から分子知識を抽出し、大量のテキスト-分子対を構築する。
我々は,TSMMGが複雑で自然言語で記述された特性を満たす分子を生成できることを実験的に明らかにした。
論文 参考訳(メタデータ) (2024-03-20T02:15:55Z) - Scaling Vision-Language Models with Sparse Mixture of Experts [128.0882767889029]
提案手法は, 等価計算コストの高密度モデルに対して, 様々なベンチマークにおいて, 最先端性能を実現することができることを示す。
我々の研究は、MoEモデルのトレーニングの安定化、モデル解釈可能性に対するMoEの影響の理解、ビジョン言語モデルをスケールする際の計算性能間のトレードオフのバランスに関する貴重な洞察を提供する。
論文 参考訳(メタデータ) (2023-03-13T16:00:31Z) - Molecule optimization via multi-objective evolutionary in implicit
chemical space [8.72872397589296]
MOMOは、化学知識の学習と多目的進化探索を組み合わせた多目的分子最適化フレームワークである。
4つの多目的特性と類似性最適化タスクにおけるMOMOの性能を実証し、ケーススタディを通してMOMOの探索能力を示す。
論文 参考訳(メタデータ) (2022-12-17T09:09:23Z) - A Molecular Multimodal Foundation Model Associating Molecule Graphs with
Natural Language [63.60376252491507]
本稿では,分子グラフとその意味的関連テキストデータから事前学習した分子マルチモーダル基礎モデルを提案する。
我々のモデルは、生物学、化学、材料、環境、医学などの分野において、AIを動力とする分野に幅広い影響を与えるだろうと考えています。
論文 参考訳(メタデータ) (2022-09-12T00:56:57Z) - Multi-Objective Latent Space Optimization of Generative Molecular Design Models [3.1996400013865656]
生成分子設計(GMD)の性能を大幅に向上させる多目的潜在空間最適化(LSO)法を提案する。
複数分子特性を共同最適化するための多目的GMD LSO法は, GMDの性能を著しく向上させることができることを示す。
論文 参考訳(メタデータ) (2022-03-01T15:12:05Z) - Molecular Attributes Transfer from Non-Parallel Data [57.010952598634944]
分子最適化をスタイル伝達問題として定式化し、非並列データの2つのグループ間の内部差を自動的に学習できる新しい生成モデルを提案する。
毒性修飾と合成性向上という2つの分子最適化タスクの実験により,本モデルがいくつかの最先端手法を著しく上回ることを示した。
論文 参考訳(メタデータ) (2021-11-30T06:10:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。