論文の概要: Attention Mechanism for LLM-based Agents Dynamic Diffusion under Information Asymmetry
- arxiv url: http://arxiv.org/abs/2502.13160v3
- Date: Tue, 20 May 2025 14:34:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-21 14:49:51.811146
- Title: Attention Mechanism for LLM-based Agents Dynamic Diffusion under Information Asymmetry
- Title(参考訳): 情報非対称性下におけるLLMエージェントの動的拡散の注意機構
- Authors: Yiwen Zhang, Yifu Wu, Wenyue Hua, Xiang Lu, Xuming Hu,
- Abstract要約: まず,マルチエージェント情報拡散を探索するための一般的なフレームワークを提案する。
そこで我々は,エージェントが異なる情報に注意を割り当てるのを支援する動的注意機構を設計した。
情報ギャップの進化,拡散パターン,社会資本の蓄積を観察し,非対称なオープン環境における情報拡散の特徴を考察する。
- 参考スコア(独自算出の注目度): 24.549309981102965
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models have been used to simulate human society using multi-agent systems. Most current social simulation research emphasizes interactive behaviors in fixed environments, ignoring information opacity, relationship variability, and diffusion diversity. In this paper, we first propose a general framework for exploring multi-agent information diffusion. We identified LLMs' deficiency in the perception and utilization of social relationships, as well as diverse actions. Then, we designed a dynamic attention mechanism to help agents allocate attention to different information, addressing the limitations of the LLM attention mechanism. Agents start by responding to external information stimuli within a five-agent group, increasing group size and forming information circles while developing relationships and sharing information. Additionally, we explore the information diffusion features in the asymmetric open environment by observing the evolution of information gaps, diffusion patterns, and the accumulation of social capital, which are closely linked to psychological, sociological, and communication theories.
- Abstract(参考訳): 大規模言語モデルは、マルチエージェントシステムを用いて人間の社会をシミュレートするために使われてきた。
最近の社会シミュレーション研究は、情報の不透明さ、関係の多様性、拡散多様性を無視する、固定された環境におけるインタラクティブな行動を強調している。
本稿ではまず,マルチエージェント情報拡散を探索するための一般的なフレームワークを提案する。
社会的関係の認識と活用におけるLSMsの欠如と多様な行動について検討した。
そこで我々は,LLMアテンション機構の限界に対処するため,エージェントが異なる情報に注意を割り当てるのを支援する動的アテンション機構を設計した。
エージェントは5人のエージェントグループ内の外部情報刺激に反応し、グループのサイズを拡大し、関係を築き、情報を共有しながら情報サークルを形成する。
さらに、情報ギャップの進化、拡散パターン、社会資本の蓄積を観察することで、非対称なオープン環境における情報拡散の特徴を探求し、心理的、社会学的、コミュニケーション理論と密接に関連している。
関連論文リスト
- LLMs are Introvert [21.542534041341774]
大規模言語モデル(LLM)は情報拡散の心理的側面をシミュレートする新たな可能性を提供する。
最初の実験では、LLM生成挙動と真の人間の力学の間に大きなギャップがあることが判明した。
本稿では、感情誘導記憶によって強化された社会情報処理に基づく思考の連鎖(SIP-CoT)機構を提案する。
論文 参考訳(メタデータ) (2025-07-08T03:32:38Z) - Assessing Collective Reasoning in Multi-Agent LLMs via Hidden Profile Tasks [5.120446836495469]
我々は,マルチエージェントLLMシステムのための診断テストベッドとして,社会心理学からの隠れプロファイルパラダイムを紹介した。
エージェント間で重要な情報を非対称に分配することにより、エージェント間ダイナミクスが集団的推論をどのように支援するか、あるいは妨げるかを明らかにする。
協調エージェントは集団的設定において過度に協調する傾向にあるが,矛盾が集団収束を損なうことが示唆された。
論文 参考訳(メタデータ) (2025-05-15T19:22:54Z) - Large Language Model Agent: A Survey on Methodology, Applications and Challenges [88.3032929492409]
大きな言語モデル(LLM)エージェントは、目標駆動の振る舞いと動的適応能力を持ち、人工知能への重要な経路を示す可能性がある。
本調査は, LLMエージェントシステムを方法論中心の分類法により体系的に分解する。
私たちの作業は、エージェントの構築方法、コラボレーション方法、時間の経過とともにどのように進化するか、という、統一されたアーキテクチャの視点を提供します。
論文 参考訳(メタデータ) (2025-03-27T12:50:17Z) - Emergence of human-like polarization among large language model agents [61.622596148368906]
我々は、何千もの大規模言語モデルエージェントを含むネットワーク化されたシステムをシミュレートし、それらの社会的相互作用を発見し、人間のような偏極をもたらす。
人間とLLMエージェントの類似性は、社会的分極を増幅する能力に関する懸念を提起するだけでなく、それを緩和するための有効な戦略を特定するための貴重なテストベッドとして機能する可能性も持っている。
論文 参考訳(メタデータ) (2025-01-09T11:45:05Z) - OASIS: Open Agent Social Interaction Simulations with One Million Agents [147.00696959981173]
実世界のソーシャルメディアプラットフォームに基づくスケーラブルなソーシャルメディアシミュレータを提案する。
OASISは最大100万人のユーザをモデリングできる大規模なユーザシミュレーションをサポートする。
我々は、情報拡散、グループ分極、XプラットフォームとRedditプラットフォーム間の群れ効果など、様々な社会現象を再現する。
論文 参考訳(メタデータ) (2024-11-18T13:57:35Z) - Spontaneous Emergence of Agent Individuality through Social Interactions in LLM-Based Communities [0.0]
本稿では,Large Language Model (LLM) ベースのエージェントを用いて,ゼロからエージェントが出現することを検討する。
このマルチエージェントシミュレーションを解析することにより、社会的規範、協力、性格特性が自然に出現する方法について、貴重な新しい知見を報告する。
論文 参考訳(メタデータ) (2024-11-05T16:49:33Z) - PersLLM: A Personified Training Approach for Large Language Models [66.16513246245401]
社会実践, 一貫性, 動的発達という, 心理学に根ざした個性の原則を統合したPersLLMを提案する。
モデルパラメータに直接パーソナリティ特性を組み込み、誘導に対するモデルの抵抗性を高め、一貫性を高め、パーソナリティの動的進化を支援する。
論文 参考訳(メタデータ) (2024-07-17T08:13:22Z) - MONAL: Model Autophagy Analysis for Modeling Human-AI Interactions [11.972017738888825]
大規模モデルの自己消費説明のためのモデルオートファジー分析(MONAL)を提案する。
MONALは、人間とAIシステム間の交換における人為的な情報の抑制を解明するために、2つの異なる自己食ループを使用している。
生成したモデルのキャパシティを,情報作成者とディスセミネータの両方として評価する。
論文 参考訳(メタデータ) (2024-02-17T13:02:54Z) - AntEval: Evaluation of Social Interaction Competencies in LLM-Driven
Agents [65.16893197330589]
大規模言語モデル(LLM)は、幅広いシナリオで人間の振る舞いを再現する能力を示した。
しかし、複雑なマルチ文字のソーシャルインタラクションを扱う能力については、まだ完全には研究されていない。
本稿では,新しいインタラクションフレームワークと評価手法を含むマルチエージェントインタラクション評価フレームワーク(AntEval)を紹介する。
論文 参考訳(メタデータ) (2024-01-12T11:18:00Z) - Agent AI: Surveying the Horizons of Multimodal Interaction [83.18367129924997]
エージェントAI(Agent AI)とは、視覚刺激や言語入力、その他の環境データを知覚できる対話型システムである。
我々は,バーチャルリアリティやシミュレートされたシーンを容易に作成し,仮想環境内に具体化されたエージェントと対話できる未来を構想する。
論文 参考訳(メタデータ) (2024-01-07T19:11:18Z) - MIDDAG: Where Does Our News Go? Investigating Information Diffusion via
Community-Level Information Pathways [114.42360191723469]
我々は、新型コロナウイルス関連のニュース記事によって引き起こされるソーシャルメディア上の情報伝達経路を可視化する、直感的でインタラクティブなシステムMIDDAGを提案する。
我々は,ユーザ間のコミュニティを構築し,伝播予測機能を開発し,情報の普及方法の追跡と理解を可能にする。
論文 参考訳(メタデータ) (2023-10-04T02:08:11Z) - Understanding Emergent Behaviours in Multi-Agent Systems with
Evolutionary Game Theory [1.0279748604797907]
本稿では,EGT と ABM の手法を用いて,本グループにおける主な研究方針と課題について要約する。
このブリーフィングは、読者をEGTに基づく問題、結果、展望に敏感にすることを目的としており、機械による心のモデリングにおいて重要である。
いずれの場合も,MAS研究において,グループによって優先される,あるいは優先される重要なオープンな問題について述べる。
論文 参考訳(メタデータ) (2022-05-15T20:01:48Z) - Modeling Bounded Rationality in Multi-Agent Simulations Using Rationally
Inattentive Reinforcement Learning [85.86440477005523]
我々は、人間不合理性の確立されたモデルであるRational Inattention(RI)モデルを含む、より人間的なRLエージェントについて検討する。
RIRLは、相互情報を用いた認知情報処理のコストをモデル化する。
我々は、RIRLを用いることで、合理的な仮定の下で発見されたものと異なる、新しい平衡挙動の豊富なスペクトルが得られることを示す。
論文 参考訳(メタデータ) (2022-01-18T20:54:00Z) - Information is Power: Intrinsic Control via Information Capture [110.3143711650806]
我々は,潜時状態空間モデルを用いて推定したエージェントの状態訪問のエントロピーを最小化する,コンパクトで汎用的な学習目的を論じる。
この目的は、不確実性の低減に対応する環境情報収集と、将来の世界状態の予測不可能性の低減に対応する環境制御の両方をエージェントに誘導する。
論文 参考訳(メタデータ) (2021-12-07T18:50:42Z) - Learning Representation over Dynamic Graph using Aggregation-Diffusion
Mechanism [4.729833950299859]
本稿では,アグリゲーション・ディフュージョン(AD)機構を提案する。
動的リンク予測タスクにおける2つの実世界のデータセットの実験において、ADメカニズムは情報を伝達するために集約のみを使用するベースラインモデルよりも優れている。
論文 参考訳(メタデータ) (2021-06-03T08:25:42Z) - An active inference model of collective intelligence [0.0]
本稿では,局所的な個人レベルの相互作用と集団的知性の関係をシミュレートする最小エージェントモデルを提案する。
その結果, エージェントの局所的最適とグローバル的最適の整合性の相補的なメカニズムを提供することにより, 段階的認知遷移がシステム性能を向上させることが示された。
論文 参考訳(メタデータ) (2021-04-02T14:32:01Z) - Information scrambling in a collision model [2.7075104175188116]
全光学系における情報力学をシミュレートする衝突モデルを提案する。
メモリと環境粒子が2方向に圧縮されている場合、その情報はスクランブルされる。
論文 参考訳(メタデータ) (2020-02-12T09:56:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。