Neurosymbolic artificial intelligence via large language models and coherence-driven inference
- URL: http://arxiv.org/abs/2502.13953v1
- Date: Wed, 19 Feb 2025 18:53:16 GMT
- Title: Neurosymbolic artificial intelligence via large language models and coherence-driven inference
- Authors: Steve Huntsman, Jewell Thomas,
- Abstract summary: We generate sets of propositions that objectively instantiate graphs that support coherence-driven inference.
We benchmark the ability of large language models to reconstruct coherence graphs from propositions expressed in natural language.
- Score: 3.522062800701924
- License:
- Abstract: We devise an algorithm to generate sets of propositions that objectively instantiate graphs that support coherence-driven inference. We then benchmark the ability of large language models (LLMs) to reconstruct coherence graphs from (a straightforward transformation of) propositions expressed in natural language, with promising results from a single prompt to models optimized for reasoning. Combining coherence-driven inference with consistency evaluations by neural models may advance the state of the art in machine cognition.
Related papers
- NeSyCoCo: A Neuro-Symbolic Concept Composer for Compositional Generalization [17.49136753589057]
NeSyCoCo is a neuro-symbolic framework that generates symbolic representations and maps them to differentiable neural computations.
Our framework achieves state-of-the-art results on the ReaSCAN and CLEVR-CoGenT compositional generalization benchmarks.
arXiv Detail & Related papers (2024-12-20T05:48:58Z) - A generative framework to bridge data-driven models and scientific theories in language neuroscience [84.76462599023802]
We present generative explanation-mediated validation, a framework for generating concise explanations of language selectivity in the brain.
We show that explanatory accuracy is closely related to the predictive power and stability of the underlying statistical models.
arXiv Detail & Related papers (2024-10-01T15:57:48Z) - Probabilistic Transformer: A Probabilistic Dependency Model for
Contextual Word Representation [52.270712965271656]
We propose a new model of contextual word representation, not from a neural perspective, but from a purely syntactic and probabilistic perspective.
We find that the graph of our model resembles transformers, with correspondences between dependencies and self-attention.
Experiments show that our model performs competitively to transformers on small to medium sized datasets.
arXiv Detail & Related papers (2023-11-26T06:56:02Z) - Discrete, compositional, and symbolic representations through attractor dynamics [51.20712945239422]
We introduce a novel neural systems model that integrates attractor dynamics with symbolic representations to model cognitive processes akin to the probabilistic language of thought (PLoT)
Our model segments the continuous representational space into discrete basins, with attractor states corresponding to symbolic sequences, that reflect the semanticity and compositionality characteristic of symbolic systems through unsupervised learning, rather than relying on pre-defined primitives.
This approach establishes a unified framework that integrates both symbolic and sub-symbolic processing through neural dynamics, a neuroplausible substrate with proven expressivity in AI, offering a more comprehensive model that mirrors the complex duality of cognitive operations
arXiv Detail & Related papers (2023-10-03T05:40:56Z) - A Recursive Bateson-Inspired Model for the Generation of Semantic Formal
Concepts from Spatial Sensory Data [77.34726150561087]
This paper presents a new symbolic-only method for the generation of hierarchical concept structures from complex sensory data.
The approach is based on Bateson's notion of difference as the key to the genesis of an idea or a concept.
The model is able to produce fairly rich yet human-readable conceptual representations without training.
arXiv Detail & Related papers (2023-07-16T15:59:13Z) - Constructing Word-Context-Coupled Space Aligned with Associative
Knowledge Relations for Interpretable Language Modeling [0.0]
The black-box structure of the deep neural network in pre-trained language models seriously limits the interpretability of the language modeling process.
A Word-Context-Coupled Space (W2CSpace) is proposed by introducing the alignment processing between uninterpretable neural representation and interpretable statistical logic.
Our language model can achieve better performance and highly credible interpretable ability compared to related state-of-the-art methods.
arXiv Detail & Related papers (2023-05-19T09:26:02Z) - Learning Disentangled Representations for Natural Language Definitions [0.0]
We argue that recurrent syntactic and semantic regularities in textual data can be used to provide the models with both structural biases and generative factors.
We leverage the semantic structures present in a representative and semantically dense category of sentence types, definitional sentences, for training a Variational Autoencoder to learn disentangled representations.
arXiv Detail & Related papers (2022-09-22T14:31:55Z) - Exploring End-to-End Differentiable Natural Logic Modeling [21.994060519995855]
We explore end-to-end trained differentiable models that integrate natural logic with neural networks.
The proposed model adapts module networks to model natural logic operations, which is enhanced with a memory component to model contextual information.
arXiv Detail & Related papers (2020-11-08T18:18:15Z) - Explaining and Improving Model Behavior with k Nearest Neighbor
Representations [107.24850861390196]
We propose using k nearest neighbor representations to identify training examples responsible for a model's predictions.
We show that kNN representations are effective at uncovering learned spurious associations.
Our results indicate that the kNN approach makes the finetuned model more robust to adversarial inputs.
arXiv Detail & Related papers (2020-10-18T16:55:25Z) - High-order Semantic Role Labeling [86.29371274587146]
This paper introduces a high-order graph structure for the neural semantic role labeling model.
It enables the model to explicitly consider not only the isolated predicate-argument pairs but also the interaction between the predicate-argument pairs.
Experimental results on 7 languages of the CoNLL-2009 benchmark show that the high-order structural learning techniques are beneficial to the strong performing SRL models.
arXiv Detail & Related papers (2020-10-09T15:33:54Z) - Overestimation of Syntactic Representationin Neural Language Models [16.765097098482286]
One popular method for determining a model's ability to induce syntactic structure trains a model on strings generated according to a template then tests the model's ability to distinguish such strings from superficially similar ones with different syntax.
We illustrate a fundamental problem with this approach by reproducing positive results from a recent paper with two non-syntactic baseline language models.
arXiv Detail & Related papers (2020-04-10T15:13:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.