論文の概要: Watch Less, Feel More: Sim-to-Real RL for Generalizable Articulated Object Manipulation via Motion Adaptation and Impedance Control
- arxiv url: http://arxiv.org/abs/2502.14457v1
- Date: Thu, 20 Feb 2025 11:18:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-21 14:28:34.571664
- Title: Watch Less, Feel More: Sim-to-Real RL for Generalizable Articulated Object Manipulation via Motion Adaptation and Impedance Control
- Title(参考訳): モーションアダプテーションとインピーダンス制御による汎用人工物体マニピュレーションのためのSim-to-Real RL
- Authors: Tan-Dzung Do, Nandiraju Gireesh, Jilong Wang, He Wang,
- Abstract要約: 可変インピーダンス制御と動き適応を備えた新しいRLパイプラインを提案する。
我々のパイプラインは、ゼロショットsim-to-real転送時の滑らかで器用な動きに焦点を当てている。
我々の知る限りでは、われわれの政策は現実世界で84%の成功率を最初に報告した。
- 参考スコア(独自算出の注目度): 7.986465090160508
- License:
- Abstract: Articulated object manipulation poses a unique challenge compared to rigid object manipulation as the object itself represents a dynamic environment. In this work, we present a novel RL-based pipeline equipped with variable impedance control and motion adaptation leveraging observation history for generalizable articulated object manipulation, focusing on smooth and dexterous motion during zero-shot sim-to-real transfer. To mitigate the sim-to-real gap, our pipeline diminishes reliance on vision by not leveraging the vision data feature (RGBD/pointcloud) directly as policy input but rather extracting useful low-dimensional data first via off-the-shelf modules. Additionally, we experience less sim-to-real gap by inferring object motion and its intrinsic properties via observation history as well as utilizing impedance control both in the simulation and in the real world. Furthermore, we develop a well-designed training setting with great randomization and a specialized reward system (task-aware and motion-aware) that enables multi-staged, end-to-end manipulation without heuristic motion planning. To the best of our knowledge, our policy is the first to report 84\% success rate in the real world via extensive experiments with various unseen objects.
- Abstract(参考訳): アーティキュレートされたオブジェクト操作は、オブジェクト自体が動的環境を表すため、剛体オブジェクト操作に比べ、ユニークな課題となる。
本研究では, 可変インピーダンス制御と動作適応を併用した新しいRL型パイプラインを提案する。
sim-to-realギャップを軽減するため、我々のパイプラインは、ビジョンデータ機能(RGBD/pointcloud)を直接ポリシー入力として活用するのではなく、オフザシェルフモジュールを介して有用な低次元データを抽出することで、ビジョンへの依存を軽減します。
さらに,物体の動きとその固有の特性を観測履歴から推定し,シミュレーションと実世界の両方でインピーダンス制御を利用することにより,現実と現実のギャップを小さくする。
さらに,多段階,エンドツーエンドの操作をヒューリスティックな動作計画なしで行うことができる,優れたランダム化と特殊報酬システム(タスク認識とモーション認識)を設計した。
我々の知識を最大限に活用するために、我々の政策は、様々な未確認物体による広範な実験を通じて、現実世界で84%の成功率を初めて報告した。
関連論文リスト
- ImDy: Human Inverse Dynamics from Imitated Observations [47.994797555884325]
逆ダイナミクス(ID)は、人間の運動学的観察から駆動トルクを再現することを目的としている。
従来の最適化ベースのIDは高価な実験室のセットアップを必要とし、可用性を制限している。
本稿では、近年進歩的な人間の動作模倣アルゴリズムを利用して、データ駆動方式で人間の逆ダイナミクスを学習することを提案する。
論文 参考訳(メタデータ) (2024-10-23T07:06:08Z) - Active-Perceptive Motion Generation for Mobile Manipulation [6.952045528182883]
移動マニピュレータのためのアクティブな知覚パイプラインを導入し,操作タスクに対して情報を与える動作を生成する。
提案手法であるActPerMoMaは,経路をサンプリングし,経路ワイズユーティリティーを演算することで,後退する水平方向にロボット経路を生成する。
両腕のTIAGo++ MoMaロボットを用いて,障害物のある散らばったシーンで移動体把握を行う実験において,本手法の有効性を示す。
論文 参考訳(メタデータ) (2023-09-30T16:56:52Z) - MotionTrack: Learning Motion Predictor for Multiple Object Tracking [68.68339102749358]
本研究では,学習可能なモーション予測器を中心に,新しいモーショントラッカーであるMotionTrackを紹介する。
実験結果から、MotionTrackはDancetrackやSportsMOTといったデータセット上での最先端のパフォーマンスを示す。
論文 参考訳(メタデータ) (2023-06-05T04:24:11Z) - Bridging the Gap to Real-World Object-Centric Learning [66.55867830853803]
自己教師付き方法で訓練されたモデルから特徴を再構成することは、完全に教師なしの方法でオブジェクト中心表現が生じるための十分な訓練信号であることを示す。
我々のアプローチであるDINOSAURは、シミュレーションデータ上で既存のオブジェクト中心学習モデルよりも大幅に優れています。
論文 参考訳(メタデータ) (2022-09-29T15:24:47Z) - Transformer Inertial Poser: Attention-based Real-time Human Motion
Reconstruction from Sparse IMUs [79.72586714047199]
本研究では,6つのIMUセンサからリアルタイムに全体動作を再構築する,注意に基づく深層学習手法を提案する。
提案手法は, 実装が簡単で, 小型でありながら, 定量的かつ質的に新しい結果が得られる。
論文 参考訳(メタデータ) (2022-03-29T16:24:52Z) - Nonprehensile Riemannian Motion Predictive Control [57.295751294224765]
本稿では,リアル・ツー・シムの報酬分析手法を導入し,リアルなロボット・プラットフォームに対する行動の可能性を確実に予測する。
連続的なアクション空間でオブジェクトを反応的にプッシュするクローズドループコントローラを作成します。
我々は,RMPCが乱雑な環境だけでなく,乱雑な環境においても頑健であり,ベースラインよりも優れていることを観察した。
論文 参考訳(メタデータ) (2021-11-15T18:50:04Z) - DriveGAN: Towards a Controllable High-Quality Neural Simulation [147.6822288981004]
DriveGANと呼ばれる新しい高品質のニューラルシミュレータを紹介します。
DriveGANは、異なるコンポーネントを監督なしで切り離すことによって制御性を達成する。
実世界の運転データ160時間を含む複数のデータセットでdriveganをトレーニングします。
論文 参考訳(メタデータ) (2021-04-30T15:30:05Z) - Hindsight for Foresight: Unsupervised Structured Dynamics Models from
Physical Interaction [24.72947291987545]
エージェントが世界と対話することを学ぶための鍵となる課題は、オブジェクトの物理的性質を推論することである。
本研究では,ラベルのない3次元点群と画像から直接,ロボットのインタラクションのダイナミクスをモデル化するための新しいアプローチを提案する。
論文 参考訳(メタデータ) (2020-08-02T11:04:49Z) - Point Cloud Based Reinforcement Learning for Sim-to-Real and Partial
Observability in Visual Navigation [62.22058066456076]
強化学習(Reinforcement Learning, RL)は、複雑なロボットタスクを解決する強力なツールである。
RL は sim-to-real transfer problem として知られる現実世界では直接作用しない。
本稿では,点雲と環境ランダム化によって構築された観測空間を学習する手法を提案する。
論文 参考訳(メタデータ) (2020-07-27T17:46:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。