論文の概要: Tree-of-Debate: Multi-Persona Debate Trees Elicit Critical Thinking for Scientific Comparative Analysis
- arxiv url: http://arxiv.org/abs/2502.14767v1
- Date: Thu, 20 Feb 2025 17:43:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-21 14:29:42.446491
- Title: Tree-of-Debate: Multi-Persona Debate Trees Elicit Critical Thinking for Scientific Comparative Analysis
- Title(参考訳): 議論の樹: 科学的な比較分析のための批判的思考を排除したマルチペソナ・ディベートツリー
- Authors: Priyanka Kargupta, Ishika Agarwal, Tal August, Jiawei Han,
- Abstract要約: 本稿では,科学論文をそれぞれの新奇性を議論するペルソナに変換するフレームワークであるTree-of-Debate(ToD)を紹介する。
ToDは議論ツリーを動的に構築し、学術論文の中で独立した新規性議論のきめ細かい分析を可能にする。
- 参考スコア(独自算出の注目度): 27.745896682856092
- License:
- Abstract: With the exponential growth of research facilitated by modern technology and improved accessibility, scientific discoveries have become increasingly fragmented within and across fields. This makes it challenging to assess the significance, novelty, incremental findings, and equivalent ideas between related works, particularly those from different research communities. Large language models (LLMs) have recently demonstrated strong quantitative and qualitative reasoning abilities, and multi-agent LLM debates have shown promise in handling complex reasoning tasks by exploring diverse perspectives and reasoning paths. Inspired by this, we introduce Tree-of-Debate (ToD), a framework which converts scientific papers into LLM personas that debate their respective novelties. To emphasize structured, critical reasoning rather than focusing solely on outcomes, ToD dynamically constructs a debate tree, enabling fine-grained analysis of independent novelty arguments within scholarly articles. Through experiments on scientific literature across various domains, evaluated by expert researchers, we demonstrate that ToD generates informative arguments, effectively contrasts papers, and supports researchers in their literature review.
- Abstract(参考訳): 近代技術によって促進された研究の指数的な成長とアクセシビリティの向上により、科学的な発見は分野内および分野間で断片化されつつある。
このことは、特に異なる研究コミュニティにおいて、関連する作品間の重要性、新規性、漸進的な発見、および同等のアイデアを評価するのが困難である。
大規模言語モデル(LLM)は、最近、強力な量的および定性的な推論能力を示し、多エージェントLSM論争は、多様な視点と推論経路を探索することによって複雑な推論タスクを扱うことを約束している。
そこで我々は,科学論文を LLM ペルソナに変換するフレームワークである Tree-of-Debate (ToD) を紹介する。
結果のみに焦点をあてるのではなく、構造化された批判的推論を強調するために、ToDは議論ツリーを動的に構築し、学術論文の中で独立した新規性議論のきめ細かい分析を可能にする。
さまざまな分野にわたる科学文献の実験を通じて、専門家による評価により、ToDが情報的議論を発生し、論文を効果的に対比し、研究者の文献レビューを支援することが実証された。
関連論文リスト
- Good Idea or Not, Representation of LLM Could Tell [86.36317971482755]
我々は、大規模言語モデルの知識を活用し、科学的アイデアのメリットを評価することを目的としたアイデアアセスメントに焦点をあてる。
我々は、このタスクに対する様々なアプローチのパフォーマンスを訓練し評価するために、細心の注意を払って設計された、フルテキストを持つ約4万の原稿からベンチマークデータセットをリリースする。
その結果, 大規模言語モデルの表現は, 生成出力よりもアイデアの価値を定量化する可能性が高いことが示唆された。
論文 参考訳(メタデータ) (2024-09-07T02:07:22Z) - Persuasiveness of Generated Free-Text Rationales in Subjective Decisions: A Case Study on Pairwise Argument Ranking [4.1017420444369215]
主観的回答を伴うタスクにおいて生成した自由文論理を解析する。
我々は、現実世界のアプリケーションにとって大きな可能性を持つ、非常に主観的なタスクであるペアワイズ引数ランキングに焦点を当てる。
以上の結果から,Llama2-70B-chat のオープンソース LLM は高い説得力のある合理化を実現できることが示唆された。
論文 参考訳(メタデータ) (2024-06-20T00:28:33Z) - LLM and Simulation as Bilevel Optimizers: A New Paradigm to Advance Physical Scientific Discovery [141.39722070734737]
本稿では,大規模言語モデルの知識駆動型抽象推論能力をシミュレーションの計算力で強化することを提案する。
本稿では,2段階最適化フレームワークであるSGA(Scientific Generative Agent)を紹介する。
法発見と分子設計における枠組みの有効性を実証するための実験を行った。
論文 参考訳(メタデータ) (2024-05-16T03:04:10Z) - ResearchAgent: Iterative Research Idea Generation over Scientific Literature with Large Language Models [56.08917291606421]
ResearchAgentは、新しい作品のアイデアと運用のためのAIベースのシステムである。
ResearchAgentは、新しい問題を自動で定義し、手法と設計実験を提案し、繰り返し修正する。
我々は、複数の分野にわたる科学論文に関するResearchAgentを実験的に検証した。
論文 参考訳(メタデータ) (2024-04-11T13:36:29Z) - Uni-SMART: Universal Science Multimodal Analysis and Research Transformer [22.90687836544612]
bfUni-textは科学文献の深い理解のために設計された革新的モデルである。
ユニテキストは、他のテキスト中心のLLMよりも優れたパフォーマンスを示す。
我々の探索は、特許侵害検出やグラフのニュアンス解析など、実用的な応用にまで及んでいる。
論文 参考訳(メタデータ) (2024-03-15T13:43:47Z) - Automated Fact-Checking of Climate Change Claims with Large Language
Models [3.1080484250243425]
本稿では、気候変動の主張の事実チェックを自動化するために設計された、新しいAIベースのツールであるCliminatorを提案する。
Climinatorは、様々な科学的視点を合成するために、革新的なMediator-Advocateフレームワークを使用している。
我々のモデルは、気候フィードバックと懐疑的な科学から収集されたクレームをテストする際に、顕著な精度を示す。
論文 参考訳(メタデータ) (2024-01-23T08:49:23Z) - An Interdisciplinary Outlook on Large Language Models for Scientific
Research [3.4108358650013573]
本稿では,異なる学問分野におけるLarge Language Models(LLM)の機能と制約について述べる。
本稿では, LLM が学術調査の強化を図り, 大量の出版物を要約することで, 文献レビューの促進などの具体的な事例を提示する。
LLMが直面する課題には、広範囲で偏見のあるデータセットへの依存や、それらの使用から生じる潜在的な倫理的ジレンマが含まれる。
論文 参考訳(メタデータ) (2023-11-03T19:41:09Z) - A Unifying Framework for Learning Argumentation Semantics [50.69905074548764]
Inductive Logic Programmingアプローチを用いて、抽象的および構造化された議論フレームワークのアクセシビリティセマンティクスを解釈可能な方法で学習する新しいフレームワークを提案する。
提案手法は既存の議論解法よりも優れており,フォーマルな議論や人間と機械の対話の領域において,新たな研究の方向性が開けることになる。
論文 参考訳(メタデータ) (2023-10-18T20:18:05Z) - Scientific Opinion Summarization: Paper Meta-review Generation Dataset, Methods, and Evaluation [55.00687185394986]
本稿では,論文レビューをメタレビューに合成する,科学的意見要約の課題を提案する。
ORSUMデータセットは、47のカンファレンスから15,062のメタレビューと57,536の論文レビューをカバーしている。
実験の結果,(1)人間による要約は,議論の深みや特定の領域に対するコンセンサスや論争の特定など,必要な基準をすべて満たしていないこと,(2)タスクの分解と反復的自己調整の組み合わせは,意見の強化に強い可能性を示唆している。
論文 参考訳(メタデータ) (2023-05-24T02:33:35Z) - What Changed Your Mind: The Roles of Dynamic Topics and Discourse in
Argumentation Process [78.4766663287415]
本稿では,議論の説得力において重要な要因を自動的に分析する研究について述べる。
議論的会話における潜在トピックや談話の変化を追跡できる新しいニューラルモデルを提案する。
論文 参考訳(メタデータ) (2020-02-10T04:27:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。