論文の概要: Red-Teaming LLM Multi-Agent Systems via Communication Attacks
- arxiv url: http://arxiv.org/abs/2502.14847v1
- Date: Thu, 20 Feb 2025 18:55:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-21 14:26:23.702560
- Title: Red-Teaming LLM Multi-Agent Systems via Communication Attacks
- Title(参考訳): 通信攻撃によるLLMマルチエージェントシステム
- Authors: Pengfei He, Yupin Lin, Shen Dong, Han Xu, Yue Xing, Hui Liu,
- Abstract要約: 大規模言語モデルに基づくマルチエージェントシステム(LLM-MAS)は、メッセージベースのコミュニケーションを通じて高度なエージェント協調を可能にすることで、複雑な問題解決能力に革命をもたらした。
エージェント・イン・ザ・ミドル(AiTM, Agent-in-the-Middle)は、エージェント間メッセージのインターセプトと操作によってLLM-MASの基本的な通信機構を利用する新たな攻撃法である。
- 参考スコア(独自算出の注目度): 10.872328358364776
- License:
- Abstract: Large Language Model-based Multi-Agent Systems (LLM-MAS) have revolutionized complex problem-solving capability by enabling sophisticated agent collaboration through message-based communications. While the communication framework is crucial for agent coordination, it also introduces a critical yet unexplored security vulnerability. In this work, we introduce Agent-in-the-Middle (AiTM), a novel attack that exploits the fundamental communication mechanisms in LLM-MAS by intercepting and manipulating inter-agent messages. Unlike existing attacks that compromise individual agents, AiTM demonstrates how an adversary can compromise entire multi-agent systems by only manipulating the messages passing between agents. To enable the attack under the challenges of limited control and role-restricted communication format, we develop an LLM-powered adversarial agent with a reflection mechanism that generates contextually-aware malicious instructions. Our comprehensive evaluation across various frameworks, communication structures, and real-world applications demonstrates that LLM-MAS is vulnerable to communication-based attacks, highlighting the need for robust security measures in multi-agent systems.
- Abstract(参考訳): 大規模言語モデルに基づくマルチエージェントシステム(LLM-MAS)は、メッセージベースのコミュニケーションを通じて高度なエージェント協調を可能にすることで、複雑な問題解決能力に革命をもたらした。
通信フレームワークはエージェントの調整に不可欠だが、重要なセキュリティ脆弱性も導入している。
本研究では,エージェント・イン・ザ・ミドル(AiTM, Agent-in-the-Middle, AiTM)を提案する。
個々のエージェントを侵害する既存の攻撃とは異なり、AiTMは、エージェント間のメッセージのみを操作することで、敵がマルチエージェントシステム全体を侵害する方法を示す。
限定的な制御と役割制限型通信フォーマットの課題下での攻撃を可能にするため,環境に配慮した悪意のある指示を生成するリフレクション機構を備えたLLM対応の敵エージェントを開発した。
各種フレームワーク,通信構造,実世界のアプリケーションに対する包括的評価は,LLM-MASが通信ベースの攻撃に対して脆弱であることを示し,マルチエージェントシステムにおける堅牢なセキュリティ対策の必要性を浮き彫りにしている。
関連論文リスト
- A Scalable Communication Protocol for Networks of Large Language Models [22.651997786682138]
AgoraはAIを利用したエージェントが複雑な問題を効率的に解決するためのメタプロトコルである。
これはAgent Communication Trilemmaを横取りし、インターフェイスやメンバーの変更をしっかりと処理します。
大規模なAgoraネットワーク上では、人間の介入なしに複雑な目標を達成する、自己組織化された完全に自動化されたプロトコルの出現を観察する。
論文 参考訳(メタデータ) (2024-10-14T23:25:13Z) - DAWN: Designing Distributed Agents in a Worldwide Network [0.38447712214412116]
DAWNはグローバルに分散エージェントを登録し、ゲートウェイエージェントを通じて簡単に発見できる。
No-LLM Mode for Deterministic Task, Copilot for augmented decision-making, and LLM Agent for autonomous operations。
DAWNは、専用の安全性、セキュリティ、コンプライアンスレイヤを通じて、世界中のエージェントコラボレーションの安全性とセキュリティを保証する。
論文 参考訳(メタデータ) (2024-10-11T18:47:04Z) - Security Matrix for Multimodal Agents on Mobile Devices: A Systematic and Proof of Concept Study [16.559272781032632]
マルチモーダル大規模言語モデルの推論能力の急速な進歩は、モバイルデバイス上での自律エージェントシステムの開発をきっかけにしている。
ヒトと機械の相互作用効率が向上したにもかかわらず、MLLMベースの移動エージェントシステムのセキュリティリスクは体系的に研究されていない。
本稿では,MLLMシステムの設計におけるセキュリティ意識の必要性を強調し,今後の攻撃・防御手法の研究の道を開く。
論文 参考訳(メタデータ) (2024-07-12T14:30:05Z) - Internet of Agents: Weaving a Web of Heterogeneous Agents for Collaborative Intelligence [79.5316642687565]
既存のマルチエージェントフレームワークは、多種多様なサードパーティエージェントの統合に苦慮することが多い。
我々はこれらの制限に対処する新しいフレームワークであるInternet of Agents (IoA)を提案する。
IoAはエージェント統合プロトコル、インスタントメッセージのようなアーキテクチャ設計、エージェントのチーム化と会話フロー制御のための動的メカニズムを導入している。
論文 参考訳(メタデータ) (2024-07-09T17:33:24Z) - AgentScope: A Flexible yet Robust Multi-Agent Platform [66.64116117163755]
AgentScopeは、メッセージ交換をコアコミュニケーションメカニズムとする、開発者中心のマルチエージェントプラットフォームである。
豊富な構文ツール、組み込みエージェントとサービス機能、アプリケーションのデモとユーティリティモニタのためのユーザフレンドリなインターフェース、ゼロコードプログラミングワークステーション、自動プロンプトチューニング機構により、開発とデプロイメントの両方の障壁は大幅に低下した。
論文 参考訳(メタデータ) (2024-02-21T04:11:28Z) - Cooperation, Competition, and Maliciousness: LLM-Stakeholders Interactive Negotiation [52.930183136111864]
我々は,大言語モデル(LLM)を評価するためにスコーラブルネゴシエーション(scorable negotiations)を提案する。
合意に達するには、エージェントは強力な算術、推論、探索、計画能力を持つ必要がある。
我々は、新しいゲームを作成し、進化するベンチマークを持つことの難しさを増大させる手順を提供する。
論文 参考訳(メタデータ) (2023-09-29T13:33:06Z) - Certifiably Robust Policy Learning against Adversarial Communication in
Multi-agent Systems [51.6210785955659]
多くのマルチエージェント強化学習(MARL)では,エージェントが情報を共有し,適切な判断を下す上でコミュニケーションが重要である。
しかし、ノイズや潜在的な攻撃者が存在する現実世界のアプリケーションに訓練された通信エージェントを配置すると、通信ベースのポリシーの安全性は過小評価されている深刻な問題となる。
本研究では,攻撃者が任意の$CfracN-12$エージェントから被害者エージェントへの通信を任意に変更できる,$N$エージェントを備えた環境を検討する。
論文 参考訳(メタデータ) (2022-06-21T07:32:18Z) - Coordinating Policies Among Multiple Agents via an Intelligent
Communication Channel [81.39444892747512]
MARL(Multi-Agent Reinforcement Learning)では、エージェントが直接通信できる特別なチャンネルがしばしば導入される。
本稿では,エージェントの集団的性能を向上させるために,エージェントが提供した信号の伝達と解釈を学習する,インテリジェントなファシリテータを通じてエージェントがコミュニケーションする手法を提案する。
論文 参考訳(メタデータ) (2022-05-21T14:11:33Z) - Adversarial Attacks On Multi-Agent Communication [80.4392160849506]
現代の自律システムはすぐに大規模に展開され、協調型マルチエージェントシステムの可能性を広げる。
このような利点は、セキュリティ侵害に対して脆弱であることが示されている通信チャネルに大きく依存している。
本稿では,エージェントが学習した中間表現を共有してコミュニケーションする新しいマルチエージェント環境において,このような攻撃を探索する。
論文 参考訳(メタデータ) (2021-01-17T00:35:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。