論文の概要: From 16-Bit to 1-Bit: Visual KV Cache Quantization for Memory-Efficient Multimodal Large Language Models
- arxiv url: http://arxiv.org/abs/2502.14882v1
- Date: Sat, 15 Feb 2025 05:08:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-24 21:37:38.883276
- Title: From 16-Bit to 1-Bit: Visual KV Cache Quantization for Memory-Efficient Multimodal Large Language Models
- Title(参考訳): 16ビットから1ビットへ: メモリ効率の良いマルチモーダル大言語モデルのためのビジュアルKVキャッシュ量子化
- Authors: Zeliang Zhang, Yifan Zhu, Susan Liang, Zhiyuan Wang, Jiani Liu, Haiting Lin, Mingjie Zhao, Chenliang Xu, Kun Wan, Wentian Zhao,
- Abstract要約: キーバリュー(KV)キャッシュは、計算のためのメモリのトレーディングによる推論効率を改善する。
既存のアプローチでは、KVキャッシュサイズを減らすために重要でないトークンをドロップすることに重点を置いている。
本稿では、メモリ消費を大幅に削減しつつ、すべての視覚トークンを保存できる、シンプルで効果的な視覚量子化戦略を提案する。
- 参考スコア(独自算出の注目度): 42.99400320918736
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Multimodal Large Language Models (MLLMs) have achieved remarkable success across various applications, yet their computational overhead during deployment remains a critical challenge. While Key-Value (KV) caching improves inference efficiency by trading memory for computation, the growing memory footprint from storing extensive KV caches reduces throughput and limits long-term execution on devices with constrained GPU memory. Existing approaches primarily focus on dropping unimportant tokens to reduce the KV cache size, mitigating memory constraints at the cost of potential information loss. In contrast, we propose a simple yet effective visual quantization strategy that preserves all visual tokens while significantly reducing memory consumption. To achieve an extreme quantization ratio, i.e., 1-bit quantization, we propose group-specific quantization and quantile-based quantization approaches, motivated by the inherent patterns of the KV cache. Our method is plug-and-play, enabling seamless integration into various MLLMs to improve memory efficiency without architectural modifications. Extensive experiments demonstrate that our approach effectively reduces memory overhead while maintaining computational efficiency and preserving multimodal performance.
- Abstract(参考訳): MLLM(Multimodal Large Language Models)は様々なアプリケーションで大きな成功を収めていますが、デプロイ時の計算オーバーヘッドは依然として重要な課題です。
キーバリュー(KV)キャッシュは、計算用メモリのトレーディングによる推論効率を改善するが、広範なKVキャッシュを格納するメモリフットプリントの増加は、スループットを低下させ、GPUメモリの制約のあるデバイス上での長期実行を制限する。
既存のアプローチでは、KVキャッシュサイズを減らすために重要でないトークンをドロップすることに重点を置いており、潜在的な情報損失のコストでメモリ制約を軽減している。
対照的に、メモリ消費を大幅に削減しつつ、全ての視覚トークンを保存する、シンプルで効果的な視覚量子化戦略を提案する。
極端量子化比、すなわち1ビット量子化を達成するために、KVキャッシュ固有のパターンによって動機付けられたグループ固有量子化と量子化に基づく量子化アプローチを提案する。
本手法はプラグ・アンド・プレイであり,各種MLLMへのシームレスな統合により,アーキテクチャ変更を伴わずにメモリ効率を向上する。
大規模な実験により,計算効率を保ち,マルチモーダル性能を保ちながら,メモリオーバーヘッドを効果的に低減できることが示された。
関連論文リスト
- QuantSpec: Self-Speculative Decoding with Hierarchical Quantized KV Cache [67.84112700032007]
大きな言語モデル(LLM)は、長いコンテキスト設定のためにエッジデバイスにデプロイされることが増えている。
これらのシナリオでは、キーバリュー(KV)キャッシュがGPUメモリとレイテンシの両方において主要なボトルネックとなっている。
そこで本研究では,ターゲットモデルのアーキテクチャを共有するが,階層的な4ビット量子化KVキャッシュと4ビット量子化重みを併用して高速化を行う,新たな自己推論型デコーディングフレームワークであるQuantSpecを提案する。
論文 参考訳(メタデータ) (2025-02-05T20:43:48Z) - XKV: Personalized KV Cache Memory Reduction for Long-Context LLM Inference [9.65524177141491]
大規模言語モデル(LLM)推論は出力トークンを1つずつ生成し、多くの冗長な計算に繋がる。
KV-Cacheフレームワークは時間と空間の複雑さを妥協する。
既存の研究では、推論精度に重要でないキャッシュデータの一部を削除することで、メモリ消費を減らすことができる。
各レイヤのキャッシュサイズをパーソナライズしてカスタマイズすることで,メモリの大幅な削減が期待できることを示す。
論文 参考訳(メタデータ) (2024-12-08T11:32:08Z) - ZipVL: Efficient Large Vision-Language Models with Dynamic Token Sparsification [29.163757099307553]
大規模視覚言語モデル(LVLM)の効率は、プリフィルフェーズにおける注意機構の計算ボトルネックによって制約される。
本稿では,重要なトークンの動的比割り当て戦略を通じて,LVLM向けに設計された効率的な推論フレームワークZipVLを提案する。
論文 参考訳(メタデータ) (2024-10-11T07:24:21Z) - LoRC: Low-Rank Compression for LLMs KV Cache with a Progressive Compression Strategy [59.1298692559785]
キーバリュー(KV)キャッシュは、トランスフォーマーベースの自己回帰型大言語モデル(LLM)を提供する上で重要なコンポーネントである。
この問題を緩和するためのアプローチとしては、(1) アップサイクルステージに統合された効率的な注意変動、(2) テスト時のKVキャッシュ圧縮、(3) テスト時のKVキャッシュ圧縮がある。
そこで我々は,KV重み行列の低ランク近似を提案し,モデル再学習なしに既存のトランスフォーマーベースLCMとのプラグイン統合を実現する。
本手法は,テスト段階におけるアップサイクリング段階のモデルチューニングやタスク固有のプロファイリングを伴わずに機能するように設計されている。
論文 参考訳(メタデータ) (2024-10-04T03:10:53Z) - ThinK: Thinner Key Cache by Query-Driven Pruning [63.13363917871414]
大規模言語モデル(LLM)は自然言語処理の分野に革命をもたらし、様々なアプリケーションで前例のない性能を達成した。
本稿では,KVキャッシュのメモリ消費の非効率性に対処する長文シナリオに焦点を当てた。
我々は,最小のチャネルを選択的に切断しながら,注目重量損失を最小限に抑える新しいクエリ依存型KVキャッシュプルーニング手法であるThinKを提案する。
論文 参考訳(メタデータ) (2024-07-30T17:59:08Z) - KV Cache is 1 Bit Per Channel: Efficient Large Language Model Inference with Coupled Quantization [34.824534775022144]
KVキャッシュ圧縮の手法として結合量子化(CQ)を提案する。
CQは複数のキー/バリューチャネルを結合して、その依存性を利用して、より情報効率の良い方法でアクティベーションをエンコードする。
我々は,KVキャッシュを1ビットまで量子化することで,CQがモデル品質を維持できることを実証した。
論文 参考訳(メタデータ) (2024-05-07T00:25:20Z) - WKVQuant: Quantizing Weight and Key/Value Cache for Large Language
Models Gains More [55.0856305773081]
大規模言語モデル (LLM) は、そのメモリ要求と自動回帰テキスト生成プロセスの計算要求のために、重要なデプロイメント課題に直面している。
本稿では、モデルパラメータとアクティベーションを低ビット整数に変換することでメモリ消費を低減する手法であるLCMの量子化に着目し、これらの課題に対処する。
論文 参考訳(メタデータ) (2024-02-19T11:33:21Z) - Get More with LESS: Synthesizing Recurrence with KV Cache Compression for Efficient LLM Inference [78.65321721142624]
我々はキー値(KV)キャッシュによって課されるメモリボトルネックに焦点を当てる。
既存のKVキャッシュ手法は、比較的重要でないKVペアの大きなスワストを刈り取ったり、取り除いたりすることでこの問題に対処する。
本稿では,固定サイズキャッシュと退避型キャッシュを簡易に統合したLESSを提案する。
論文 参考訳(メタデータ) (2024-02-14T18:54:56Z) - KVQuant: Towards 10 Million Context Length LLM Inference with KV Cache Quantization [67.74400574357472]
LLMは、大きなコンテキストウィンドウを必要とするアプリケーションでの利用が増えており、この大きなコンテキストウィンドウでは、KVキャッシュのアクティベーションが推論時のメモリ消費の主要な要因として表面化している。
量子化はKVキャッシュのアクティベーションを圧縮する上で有望な手法であるが、既存のソリューションは4ビット以下の精度でアクティベーションを正確に表現できない。
我々の研究であるKVQuantは、いくつかの新しい手法を取り入れることで、低精度のKVキャッシュ量子化を容易にする。
論文 参考訳(メタデータ) (2024-01-31T18:58:14Z) - FineQuant: Unlocking Efficiency with Fine-Grained Weight-Only
Quantization for LLMs [9.072821427818557]
大規模言語モデル(LLM)は、様々な言語タスクで最先端のパフォーマンスを達成しているが、実用的なデプロイメントには課題がある。
メモリ消費を削減し,LLMの推論を高速化する,効率的な重みのみの量子化法を提案する。
我々は,OPT-175Bや内部MoEモデルのような大規模オープンソースモデルに対するアプローチを評価し,スループットを最大3.65倍に向上しながら,最小限の精度の損失を示す。
論文 参考訳(メタデータ) (2023-08-16T23:57:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。