論文の概要: Verification and Validation for Trustworthy Scientific Machine Learning
- arxiv url: http://arxiv.org/abs/2502.15496v2
- Date: Fri, 25 Apr 2025 19:02:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-29 18:43:11.184582
- Title: Verification and Validation for Trustworthy Scientific Machine Learning
- Title(参考訳): 信頼できる科学機械学習の検証と検証
- Authors: John D. Jakeman, Lorena A. Barba, Joaquim R. R. A. Martins, Thomas O'Leary-Roseberry,
- Abstract要約: 本研究の目的は,予測型SciMLにおけるコンセンサスに基づくグッドプラクティスの確立に関する議論を開始することである。
検証プロトコルや検証プロトコルなど,既存の計算科学・工学ガイドラインを適用する上で重要な課題を明らかにする。
予測アプリケーションを中心にして16の推奨事項は、研究者がSciMLのすべてのドメインに対して厳格にモデリングプロセスを実行し、文書化することを支援することを目的としています。
- 参考スコア(独自算出の注目度): 0.8749675983608172
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Scientific machine learning (SciML) models are transforming many scientific disciplines. However, the development of good modeling practices to increase the trustworthiness of SciML has lagged behind its application, limiting its potential impact. The goal of this paper is to start a discussion on establishing consensus-based good practices for predictive SciML. We identify key challenges in applying existing computational science and engineering guidelines, such as verification and validation protocols, and provide recommendations to address these challenges. Our discussion focuses on predictive SciML, which uses machine learning models to learn, improve, and accelerate numerical simulations of physical systems. While centered on predictive applications, our 16 recommendations aim to help researchers conduct and document their modeling processes rigorously across all SciML domains.
- Abstract(参考訳): 科学機械学習(SciML)モデルは、多くの科学分野を変革している。
しかし、SciMLの信頼性を高めるための優れたモデリングプラクティスの開発は、そのアプリケーションに遅れを取っており、潜在的な影響を制限している。
本研究の目的は,予測型SciMLにおけるコンセンサスに基づくグッドプラクティスの確立に関する議論を開始することである。
検証プロトコルや検証プロトコルなど,既存の計算科学・工学ガイドラインを適用する上で重要な課題を特定し,これらの課題に対処するためのレコメンデーションを提供する。
本稿では、機械学習モデルを用いて物理系の数値シミュレーションを学習、改善、高速化する予測型SciMLについて論じる。
予測アプリケーションを中心にして16の推奨事項は、研究者がSciMLのすべてのドメインに対して厳格にモデリングプロセスを実行し、文書化することを支援することを目的としています。
関連論文リスト
- Physics-Informed Inference Time Scaling via Simulation-Calibrated Scientific Machine Learning [5.728698570173857]
高次元偏微分方程式(PDE)は、量子化学から経済学、金融まで幅広い分野において重要な計算課題を提起する。
科学的機械学習(SciML)技術は近似的な解決策を提供するが、バイアスに悩まされ、重要な物理的洞察を無視することが多い。
シミュレーション・キャリブレーション・サイエンティフィック・機械学習(SCa)は,物理法則を強制することによって推論中のSCiML予測を動的に洗練・除去するフレームワークである。
論文 参考訳(メタデータ) (2025-04-22T18:01:45Z) - LLM Post-Training: A Deep Dive into Reasoning Large Language Models [131.10969986056]
大規模言語モデル (LLMs) は自然言語処理の状況を変え、多様な応用をもたらした。
ポストトレーニング手法により、LLMは知識を洗練させ、推論を改善し、事実の正確性を高め、ユーザの意図や倫理的配慮をより効果的に整合させることができる。
論文 参考訳(メタデータ) (2025-02-28T18:59:54Z) - A Survey on Memory-Efficient Large-Scale Model Training in AI for Science [20.31466892935848]
この調査は、生物学、医学、化学、気象学などの科学分野にまたがる応用をレビューする。
本稿では,変圧器アーキテクチャに基づく大規模言語モデル(LLM)のメモリ効率トレーニング手法について概説する。
予測精度を保ちながら,メモリ最適化手法がストレージ需要を削減できることを実証する。
論文 参考訳(メタデータ) (2025-01-21T03:06:30Z) - MAPS: Advancing Multi-Modal Reasoning in Expert-Level Physical Science [62.96434290874878]
現在のMLLM(Multi-Modal Large Language Models)は、一般的な視覚的推論タスクにおいて強力な機能を示している。
我々は,MLLMに基づく物理知覚とシミュレーションによるマルチモーダル科学推論(MAPS)という新しいフレームワークを開発した。
MAPSは、専門家レベルのマルチモーダル推論タスクを物理的知覚モデル(PPM)を介して物理図理解に分解し、シミュレータを介して物理的知識で推論する。
論文 参考訳(メタデータ) (2025-01-18T13:54:00Z) - Geometry Matters: Benchmarking Scientific ML Approaches for Flow Prediction around Complex Geometries [23.111935712144277]
複雑な幾何学体を取り巻く流体力学の迅速かつ正確なシミュレーションは、様々な工学的・科学的応用において重要である。
科学機械学習(SciML)はかなりの可能性を示してきたが、この分野のほとんどの研究は単純な幾何学に限られている。
本稿では,複雑な地形上での流動予測のための多種多様なSciMLモデルのベンチマークにより,このギャップを解消する。
論文 参考訳(メタデータ) (2024-12-31T00:23:15Z) - Recent Advances on Machine Learning for Computational Fluid Dynamics: A Survey [51.87875066383221]
本稿では、基本概念、従来の手法、ベンチマークデータセットを紹介し、CFDを改善する上で機械学習が果たす様々な役割について検討する。
我々は,空気力学,燃焼,大気・海洋科学,生物流体,プラズマ,記号回帰,秩序の低減など,CFDにおけるMLの現実的な応用を強調した。
シミュレーションの精度を向上し、計算時間を短縮し、流体力学のより複雑な解析を可能にすることにより、MLはCFD研究を大きく変革する可能性があるという結論を導いた。
論文 参考訳(メタデータ) (2024-08-22T07:33:11Z) - Improving Molecular Modeling with Geometric GNNs: an Empirical Study [56.52346265722167]
本稿では,異なる標準化手法,(2)グラフ作成戦略,(3)補助的なタスクが性能,拡張性,対称性の強制に与える影響に焦点をあてる。
本研究の目的は,分子モデリングタスクに最適なモデリングコンポーネントの選択を研究者に案内することである。
論文 参考訳(メタデータ) (2024-07-11T09:04:12Z) - Reliable edge machine learning hardware for scientific applications [34.87898436984149]
極端なデータレートの科学実験は、効率的なMLエッジ処理を必要とする大量のデータを生成する。
このような厳密なレイテンシ、リソース、パワー、および領域要件の下で、科学的なエッジで信頼できるアルゴリズムを開発し、検証するためのアプローチについて議論する。
論文 参考訳(メタデータ) (2024-06-27T20:45:08Z) - LLM and Simulation as Bilevel Optimizers: A New Paradigm to Advance Physical Scientific Discovery [141.39722070734737]
本稿では,大規模言語モデルの知識駆動型抽象推論能力をシミュレーションの計算力で強化することを提案する。
本稿では,2段階最適化フレームワークであるSGA(Scientific Generative Agent)を紹介する。
法発見と分子設計における枠組みの有効性を実証するための実験を行った。
論文 参考訳(メタデータ) (2024-05-16T03:04:10Z) - SciInstruct: a Self-Reflective Instruction Annotated Dataset for Training Scientific Language Models [57.96527452844273]
我々はSciInstructを紹介した。SciInstructは、大学レベルの科学的推論が可能な科学言語モデルを訓練するための科学指導スイートである。
我々は、物理学、化学、数学、公式な証明を含む多種多様な高品質なデータセットをキュレートした。
SciInstructの有効性を検証するため、SciInstruct、すなわちChatGLM3(6Bと32B)、Llama3-8B-Instruct、Mistral-7B: MetaMathを用いて言語モデルを微調整した。
論文 参考訳(メタデータ) (2024-01-15T20:22:21Z) - Constructing Impactful Machine Learning Research for Astronomy: Best
Practices for Researchers and Reviewers [0.0]
機械学習は、天文学のコミュニティにとって、急速に選択のツールになりつつある。
本稿では、機械学習モデルの実装方法と結果の報告方法について、天文学コミュニティにプライマーを提供する。
論文 参考訳(メタデータ) (2023-10-19T07:04:36Z) - Differentiable modeling to unify machine learning and physical models
and advance Geosciences [38.92849886903847]
微分可能地科学モデリング(DG)の概念,適用性,意義について概説する。
微分可能(differentiable)とは、モデル変数に関する勾配を正確かつ効率的に計算すること。
予備的な証拠は、DGが機械学習よりも優れた解釈可能性と因果性を提供することを示している。
論文 参考訳(メタデータ) (2023-01-10T15:24:14Z) - Learning continuous models for continuous physics [94.42705784823997]
本研究では,科学技術応用のための機械学習モデルを検証する数値解析理論に基づくテストを開発する。
本研究は,従来のMLトレーニング/テスト手法と一体化して,科学・工学分野におけるモデルの検証を行う方法である。
論文 参考訳(メタデータ) (2022-02-17T07:56:46Z) - An Extensible Benchmark Suite for Learning to Simulate Physical Systems [60.249111272844374]
我々は、統一されたベンチマークと評価プロトコルへの一歩を踏み出すために、一連のベンチマーク問題を導入する。
本稿では,4つの物理系と,広く使用されている古典的時間ベースおよび代表的なデータ駆動手法のコレクションを提案する。
論文 参考訳(メタデータ) (2021-08-09T17:39:09Z) - Towards the Development of Entropy-Based Anomaly Detection in an
Astrophysics Simulation [0.2867517731896504]
コア崩壊型超新星シミュレーションから生じる異常問題について述べる。
本稿では,この科学的シミュレーションに異常検出技術を適用する際の戦略と早期成功について論じる。
論文 参考訳(メタデータ) (2020-09-05T01:43:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。