論文の概要: Physics-Informed Inference Time Scaling via Simulation-Calibrated Scientific Machine Learning
- arxiv url: http://arxiv.org/abs/2504.16172v2
- Date: Fri, 25 Apr 2025 15:12:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:52.884677
- Title: Physics-Informed Inference Time Scaling via Simulation-Calibrated Scientific Machine Learning
- Title(参考訳): シミュレーションキャリブレーションによる物理インフォームド推論時間スケーリング
- Authors: Zexi Fan, Yan Sun, Shihao Yang, Yiping Lu,
- Abstract要約: 高次元偏微分方程式(PDE)は、量子化学から経済学、金融まで幅広い分野において重要な計算課題を提起する。
科学的機械学習(SciML)技術は近似的な解決策を提供するが、バイアスに悩まされ、重要な物理的洞察を無視することが多い。
シミュレーション・キャリブレーション・サイエンティフィック・機械学習(SCa)は,物理法則を強制することによって推論中のSCiML予測を動的に洗練・除去するフレームワークである。
- 参考スコア(独自算出の注目度): 5.728698570173857
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: High-dimensional partial differential equations (PDEs) pose significant computational challenges across fields ranging from quantum chemistry to economics and finance. Although scientific machine learning (SciML) techniques offer approximate solutions, they often suffer from bias and neglect crucial physical insights. Inspired by inference-time scaling strategies in language models, we propose Simulation-Calibrated Scientific Machine Learning (SCaSML), a physics-informed framework that dynamically refines and debiases the SCiML predictions during inference by enforcing the physical laws. SCaSML leverages derived new physical laws that quantifies systematic errors and employs Monte Carlo solvers based on the Feynman-Kac and Elworthy-Bismut-Li formulas to dynamically correct the prediction. Both numerical and theoretical analysis confirms enhanced convergence rates via compute-optimal inference methods. Our numerical experiments demonstrate that SCaSML reduces errors by 20-50% compared to the base surrogate model, establishing it as the first algorithm to refine approximated solutions to high-dimensional PDE during inference. Code of SCaSML is available at https://github.com/Francis-Fan-create/SCaSML.
- Abstract(参考訳): 高次元偏微分方程式(PDE)は、量子化学から経済学、金融まで幅広い分野において重要な計算課題を提起する。
科学的機械学習(SciML)技術は近似的な解決策を提供するが、バイアスに悩まされ、重要な物理的洞察を無視することが多い。
言語モデルにおける推論時間スケーリング戦略に着想を得て,物理法則を強制することによって推論中のSCiML予測を動的に洗練・除去する物理インフォームド・フレームワークであるSimulation-Calibrated Scientific Machine Learning (SCaSML)を提案する。
SCaSMLは、体系的な誤りを定量化する新しい物理法則を利用しており、予測を動的に補正するために、ファインマン・カックとエリート・ビシュトゥ-リの公式に基づくモンテカルロ解法を用いる。
数値解析と理論解析の両方で、計算-最適推論法による収束率の向上が確認されている。
数値実験により,SCaSMLはベースサロゲートモデルと比較して誤差を20-50%削減し,高次元PDEの近似解を推論時に改良するアルゴリズムとして確立した。
SCaSMLのコードはhttps://github.com/Francis-Fan-create/SCaSMLで公開されている。
関連論文リスト
- EquiNO: A Physics-Informed Neural Operator for Multiscale Simulations [0.8345452787121658]
我々は,マイクロスケール物理予測のための物理インフォームドPDEサロゲートとしてEquiNOを提案する。
我々のフレームワークは、いわゆるマルチスケール FE$,2,$ の計算に適用でき、有限要素法(FE)と演算子学習法(OL)を統合することで FE-OL アプローチを導入している。
論文 参考訳(メタデータ) (2025-03-27T08:42:13Z) - RoSTE: An Efficient Quantization-Aware Supervised Fine-Tuning Approach for Large Language Models [53.571195477043496]
本稿では,RoSTE (Rotated Straight-Through-Estimator) というアルゴリズムを提案する。
RoSTEは、量子化を意識した微調整(QA-SFT)と適応的な回転戦略を組み合わせることで、アクティベーションアウトリーを減少させる。
その結果, 予測誤差は収束重みの量子化誤差と直接比例し, 最適化された回転構成により効果的に管理できることが判明した。
論文 参考訳(メタデータ) (2025-02-13T06:44:33Z) - Combining physics-based and data-driven models: advancing the frontiers of research with Scientific Machine Learning [3.912796219404492]
SciMLは物理学に基づくモデルとデータ駆動モデルを組み合わせた研究分野である。
データ駆動モデルは、入力データと出力データの間の関係を抽出することを目的としている。
SciMLのヒト心機能シミュレーションへの応用について検討した。
論文 参考訳(メタデータ) (2025-01-30T19:09:38Z) - Recent Advances on Machine Learning for Computational Fluid Dynamics: A Survey [51.87875066383221]
本稿では、基本概念、従来の手法、ベンチマークデータセットを紹介し、CFDを改善する上で機械学習が果たす様々な役割について検討する。
我々は,空気力学,燃焼,大気・海洋科学,生物流体,プラズマ,記号回帰,秩序の低減など,CFDにおけるMLの現実的な応用を強調した。
シミュレーションの精度を向上し、計算時間を短縮し、流体力学のより複雑な解析を可能にすることにより、MLはCFD研究を大きく変革する可能性があるという結論を導いた。
論文 参考訳(メタデータ) (2024-08-22T07:33:11Z) - Leveraging viscous Hamilton-Jacobi PDEs for uncertainty quantification in scientific machine learning [1.8175282137722093]
科学機械学習(SciML)における不確実性(UQ)は、SciMLの強力な予測力と、学習したモデルの信頼性を定量化する方法を組み合わせる。
我々は、SciMLと粘性ハミルトン-ヤコビ偏微分方程式(HJ PDE)で生じるいくつかのベイズ推論問題の間の新しい理論的関係を確立することにより、UQ問題に対する新しい解釈を提供する。
我々はモデル予測を継続的に更新する際の計算上の利点を提供する新しいRacatiベースの方法論を開発した。
論文 参考訳(メタデータ) (2024-04-12T20:54:01Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
本稿では,記号回帰(SR)と離散指数計算(DEC)を組み合わせて物理モデルの自動発見を行うフレームワークを提案する。
DECは、SRの物理問題への最先端の応用を越えている、場の理論の離散的な類似に対して、ビルディングブロックを提供する。
実験データから連続体物理の3つのモデルを再発見し,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-10-10T13:23:05Z) - Pre-training Tensor-Train Networks Facilitates Machine Learning with Variational Quantum Circuits [70.97518416003358]
変分量子回路(VQC)は、ノイズの多い中間スケール量子(NISQ)デバイス上での量子機械学習を約束する。
テンソルトレインネットワーク(TTN)はVQC表現と一般化を向上させることができるが、結果として得られるハイブリッドモデルであるTTN-VQCは、Polyak-Lojasiewicz(PL)条件による最適化の課題に直面している。
この課題を軽減するために,プレトレーニングTTNモデルとVQCを組み合わせたPre+TTN-VQCを導入する。
論文 参考訳(メタデータ) (2023-05-18T03:08:18Z) - Learning Controllable Adaptive Simulation for Multi-resolution Physics [86.8993558124143]
完全深層学習に基づくサロゲートモデルとして,LAMP(Learning Controllable Adaptive Simulation for Multi- resolution Physics)を導入した。
LAMPは、前方進化を学習するためのグラフニューラルネットワーク(GNN)と、空間的洗練と粗大化のポリシーを学ぶためのGNNベースのアクター批判で構成されている。
我々は,LAMPが最先端のディープラーニングサロゲートモデルより優れており,長期予測誤差を改善するために,適応的なトレードオフ計算が可能であることを実証した。
論文 参考訳(メタデータ) (2023-05-01T23:20:27Z) - Deep learning applied to computational mechanics: A comprehensive
review, state of the art, and the classics [77.34726150561087]
人工知能,特に深層学習(DL)の最近の進歩を概観する。
ハイブリッドおよび純粋機械学習(ML)の手法について論じる。
AIの歴史と限界は、特に古典の誤解や誤解を指摘し、議論され、議論される。
論文 参考訳(メタデータ) (2022-12-18T02:03:00Z) - Hessian-based toolbox for reliable and interpretable machine learning in
physics [58.720142291102135]
本稿では,モデルアーキテクチャの解釈可能性と信頼性,外挿を行うためのツールボックスを提案する。
与えられたテストポイントでの予測に対する入力データの影響、モデル予測の不確実性の推定、およびモデル予測の不可知スコアを提供する。
我々の研究は、物理学やより一般的には科学に適用されたMLにおける解釈可能性と信頼性の方法の体系的利用への道を開く。
論文 参考訳(メタデータ) (2021-08-04T16:32:59Z) - Recurrent Localization Networks applied to the Lippmann-Schwinger
Equation [0.0]
一般化Lippmann-Schwinger (L-S) 型の方程式を解くための新しい機械学習手法を提案する。
学習に基づくループアンロールの一部として、リカレント畳み込みニューラルネットワークを用いて、関心のある分野の制御方程式を反復的に解く。
本研究では, 局所的(ボクセルレベル)弾性ひずみの予測において, 優れた精度が得られる2相弾性局在問題に対する学習手法を示す。
論文 参考訳(メタデータ) (2021-01-29T20:54:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。