論文の概要: TimePFN: Effective Multivariate Time Series Forecasting with Synthetic Data
- arxiv url: http://arxiv.org/abs/2502.16294v1
- Date: Sat, 22 Feb 2025 16:55:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:57:17.811175
- Title: TimePFN: Effective Multivariate Time Series Forecasting with Synthetic Data
- Title(参考訳): TimePFN: 合成データによる実効多変量時系列予測
- Authors: Ege Onur Taga, M. Emrullah Ildiz, Samet Oymak,
- Abstract要約: TimePFNは、ベイズ推定の近似を目的としたPFN(Presideed-data Fitted Networks)の概念に基づいている。
我々は、いくつかのベンチマークデータセット上でTimePFNを評価し、MSS予測のための既存の最先端モデルよりも優れていることを示す。
- 参考スコア(独自算出の注目度): 22.458320848520042
- License:
- Abstract: The diversity of time series applications and scarcity of domain-specific data highlight the need for time-series models with strong few-shot learning capabilities. In this work, we propose a novel training scheme and a transformer-based architecture, collectively referred to as TimePFN, for multivariate time-series (MTS) forecasting. TimePFN is based on the concept of Prior-data Fitted Networks (PFN), which aims to approximate Bayesian inference. Our approach consists of (1) generating synthetic MTS data through diverse Gaussian process kernels and the linear coregionalization method, and (2) a novel MTS architecture capable of utilizing both temporal and cross-channel dependencies across all input patches. We evaluate TimePFN on several benchmark datasets and demonstrate that it outperforms the existing state-of-the-art models for MTS forecasting in both zero-shot and few-shot settings. Notably, fine-tuning TimePFN with as few as 500 data points nearly matches full dataset training error, and even 50 data points yield competitive results. We also find that TimePFN exhibits strong univariate forecasting performance, attesting to its generalization ability. Overall, this work unlocks the power of synthetic data priors for MTS forecasting and facilitates strong zero- and few-shot forecasting performance.
- Abstract(参考訳): 時系列適用の多様性とドメイン固有のデータの不足は、強力な数ショット学習機能を備えた時系列モデルの必要性を浮き彫りにする。
本研究では,多変量時系列(MTS)予測のための新しいトレーニングスキームとトランスフォーマーベースのアーキテクチャを提案する。
TimePFNは、ベイズ推定の近似を目的としたPFN(Presideed-data Fitted Networks)の概念に基づいている。
提案手法は,(1)多種多様なガウスプロセスカーネルと線形コリージョン化手法を通じて合成MSSデータを生成すること,および(2)全ての入力パッチにまたがる時間的およびチャネル間の依存関係を活用可能な新しいMSSアーキテクチャからなる。
我々は、いくつかのベンチマークデータセット上でTimePFNを評価し、ゼロショットと少数ショットの両方の設定で、MSS予測のための既存の最先端モデルよりも優れていることを示す。
特に、500以上のデータポイントを持つ微調整のTimePFNは、完全なデータセットトレーニングエラーとほぼ一致し、50のデータポイントさえも競合する結果をもたらす。
また、TimePFNは、その一般化能力を示す強い単変量予測性能を示す。
全体として、この研究は、MSS予測のための合成データ事前のパワーを解放し、強いゼロショットと少数ショットの予測性能を促進する。
関連論文リスト
- Tackling Data Heterogeneity in Federated Time Series Forecasting [61.021413959988216]
時系列予測は、エネルギー消費予測、病気の伝染モニタリング、天気予報など、様々な実世界の応用において重要な役割を果たす。
既存のほとんどのメソッドは、分散デバイスから中央クラウドサーバに大量のデータを収集する、集中的なトレーニングパラダイムに依存しています。
本稿では,情報合成データを補助的知識キャリアとして生成することにより,データの均一性に対処する新しいフレームワークであるFed-TRENDを提案する。
論文 参考訳(メタデータ) (2024-11-24T04:56:45Z) - Test Time Learning for Time Series Forecasting [1.4605709124065924]
テストタイムトレーニング(TTT)モジュールは、MambaベースのTimeMachineなど、最先端モデルよりも一貫して優れている。
その結果,平均二乗誤差 (MSE) と平均絶対誤差 (MAE) に有意な改善が認められた。
この研究は、時系列予測の新しいベンチマークを設定し、スケーラブルで高性能な予測モデルにおける将来の研究の基礎を定めている。
論文 参考訳(メタデータ) (2024-09-21T04:40:08Z) - PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
私たちはaを提案します。
フェデレートされた異常検出フレームワークであるPeFADは、プライバシーの懸念が高まっている。
我々は、4つの実際のデータセットに対して広範な評価を行い、PeFADは既存の最先端ベースラインを最大28.74%上回っている。
論文 参考訳(メタデータ) (2024-06-04T13:51:08Z) - Chronos: Learning the Language of Time Series [79.38691251254173]
Chronosは事前訓練された確率的時系列モデルのためのフレームワークである。
クロノスモデルでは,様々な領域の時系列データを利用して,未知の予測タスクにおけるゼロショット精度を向上させることができることを示す。
論文 参考訳(メタデータ) (2024-03-12T16:53:54Z) - Unified Training of Universal Time Series Forecasting Transformers [104.56318980466742]
マスク型ユニバーサル時系列予測変換器(モイライ)について述べる。
Moiraiは、新たに導入された大規模オープンタイムシリーズアーカイブ(LOTSA)で訓練されており、9つのドメインで27億以上の観測が行われた。
Moiraiは、フルショットモデルと比較してゼロショットの予測器として、競争力や優れたパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-02-04T20:00:45Z) - TPRNN: A Top-Down Pyramidal Recurrent Neural Network for Time Series
Forecasting [7.08506873242564]
時系列は、異なるスケールで異なる時間パターン、すなわち異なる時間パターンを持つ。
時系列予測のためのTPRNN(Top-down Pyramidal Recurrent Neural Network)を提案する。
TPRNNは、最高のベースラインに比べて平均8.13%改善して最先端のパフォーマンスを達成した。
論文 参考訳(メタデータ) (2023-12-11T12:21:45Z) - Fully-Connected Spatial-Temporal Graph for Multivariate Time-Series Data [50.84488941336865]
完全時空間グラフニューラルネットワーク(FC-STGNN)という新しい手法を提案する。
グラフ構築のために、時間的距離に基づいて、すべてのタイムスタンプにセンサーを接続する減衰グラフを設計する。
グラフ畳み込みのために,移動プールGNN層を用いたFCグラフ畳み込みを考案し,ST依存性を効果的に把握し,効率的な表現を学習する。
論文 参考訳(メタデータ) (2023-09-11T08:44:07Z) - SpectraNet: Multivariate Forecasting and Imputation under Distribution
Shifts and Missing Data [40.21502451136054]
SpectraNetは時系列予測モデルであり、最近の観測履歴に時間的ダイナミクスと相関関係を動的に推論する。
畳み込みニューラルネットワークは、学習した表現を、成分を逐次混合し、出力を精製することによってマッピングする。
提案手法は, 過去の観測を同時に予測し, 補間し, 生産システムを大幅に単純化することができる。
論文 参考訳(メタデータ) (2022-10-22T18:07:31Z) - Pre-training Enhanced Spatial-temporal Graph Neural Network for
Multivariate Time Series Forecasting [13.441945545904504]
スケーラブルな時系列事前学習モデル(STEP)によりSTGNNが拡張される新しいフレームワークを提案する。
具体的には、非常に長期の歴史時系列から時間パターンを効率的に学習するための事前学習モデルを設計する。
我々のフレームワークは下流のSTGNNを著しく強化することができ、事前学習モデルは時間パターンを適切にキャプチャする。
論文 参考訳(メタデータ) (2022-06-18T04:24:36Z) - Cluster-and-Conquer: A Framework For Time-Series Forecasting [94.63501563413725]
本稿では,高次元時系列データを予測するための3段階フレームワークを提案する。
当社のフレームワークは非常に汎用的で,各ステップで時系列予測やクラスタリングが利用可能です。
単純な線形自己回帰モデルでインスタンス化されると、いくつかのベンチマークデータセットで最先端の結果が得られる。
論文 参考訳(メタデータ) (2021-10-26T20:41:19Z) - Improving the Accuracy of Global Forecasting Models using Time Series
Data Augmentation [7.38079566297881]
GFM(Global Forecasting Models)として知られる多くの時系列のセットでトレーニングされた予測モデルは、競争や実世界のアプリケーションを予測する上で有望な結果を示している。
本稿では,GFMモデルのベースライン精度を向上させるための,データ拡張に基づく新しい予測フレームワークを提案する。
論文 参考訳(メタデータ) (2020-08-06T13:52:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。