Uncertainty Quantification of Large Language Models through Multi-Dimensional Responses
- URL: http://arxiv.org/abs/2502.16820v2
- Date: Tue, 25 Feb 2025 05:03:51 GMT
- Title: Uncertainty Quantification of Large Language Models through Multi-Dimensional Responses
- Authors: Tiejin Chen, Xiaoou Liu, Longchao Da, Jia Chen, Vagelis Papalexakis, Hua Wei,
- Abstract summary: We introduce a multi-dimensional UQ framework that integrates semantic and knowledge-aware similarity analysis.<n>This approach disentangles overlapping information from both semantic and knowledge dimensions, capturing both semantic variations and factual consistency.<n>Our empirical evaluations demonstrate that our method outperforms existing techniques in identifying uncertain responses.
- Score: 4.505944978127014
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have demonstrated remarkable capabilities across various tasks due to large training datasets and powerful transformer architecture. However, the reliability of responses from LLMs remains a question. Uncertainty quantification (UQ) of LLMs is crucial for ensuring their reliability, especially in areas such as healthcare, finance, and decision-making. Existing UQ methods primarily focus on semantic similarity, overlooking the deeper knowledge dimensions embedded in responses. We introduce a multi-dimensional UQ framework that integrates semantic and knowledge-aware similarity analysis. By generating multiple responses and leveraging auxiliary LLMs to extract implicit knowledge, we construct separate similarity matrices and apply tensor decomposition to derive a comprehensive uncertainty representation. This approach disentangles overlapping information from both semantic and knowledge dimensions, capturing both semantic variations and factual consistency, leading to more accurate UQ. Our empirical evaluations demonstrate that our method outperforms existing techniques in identifying uncertain responses, offering a more robust framework for enhancing LLM reliability in high-stakes applications.
Related papers
- Uncertainty Quantification and Confidence Calibration in Large Language Models: A Survey [11.737403011836532]
Large Language Models (LLMs) excel in text generation, reasoning, and decision-making in high-stakes domains such as healthcare, law, and transportation.
Uncertainty quantification (UQ) enhances trustworthiness by estimating confidence in outputs, enabling risk mitigation and selective prediction.
We introduce a new taxonomy that categorizes UQ methods based on computational efficiency and uncertainty dimensions.
arXiv Detail & Related papers (2025-03-20T05:04:29Z) - Knowledge-Aware Iterative Retrieval for Multi-Agent Systems [0.0]
We introduce a novel large language model (LLM)-driven agent framework.
It iteratively refines queries and filters contextual evidence by leveraging dynamically evolving knowledge.
The proposed system supports both competitive and collaborative sharing of updated context.
arXiv Detail & Related papers (2025-03-17T15:27:02Z) - Your Language Model May Think Too Rigidly: Achieving Reasoning Consistency with Symmetry-Enhanced Training [66.48331530995786]
We propose syMmetry-ENhanceD (MEND) Data Augmentation, a data-centric approach that improves the model's ability to extract useful information from context.
Unlike existing methods that emphasize reasoning chain augmentation, our approach improves model robustness at the knowledge extraction stage.
Experiments on both logical and arithmetic reasoning tasks show that MEND enhances reasoning performance across diverse query variations.
arXiv Detail & Related papers (2025-02-25T03:03:35Z) - Multi-granular Training Strategies for Robust Multi-hop Reasoning Over Noisy and Heterogeneous Knowledge Sources [0.0]
Multi-source multi-hop question answering (QA) represents a challenging task in natural language processing.<n>Existing methods often suffer from cascading errors, insufficient handling of knowledge conflicts, and computational inefficiency.<n>We propose Adaptive Multi-source Knowledge-Oriented Reasoning (AMKOR) to dynamically fuse parametric and retrieved knowledge.
arXiv Detail & Related papers (2025-02-09T16:06:43Z) - CoCoA: A Generalized Approach to Uncertainty Quantification by Integrating Confidence and Consistency of LLM Outputs [35.74755307680801]
Uncertainty quantification (UQ) methods for Large Language Models (LLMs) encompasses a variety of approaches.<n>We propose a new way of synthesizing model confidence and output consistency that leads to a family of efficient and robust UQ methods.
arXiv Detail & Related papers (2025-02-07T14:30:12Z) - UAlign: Leveraging Uncertainty Estimations for Factuality Alignment on Large Language Models [41.67393607081513]
Large Language Models (LLMs) often struggle to accurately express the factual knowledge they possess.<n>We propose the UAlign framework, which leverages Uncertainty estimations to represent knowledge boundaries.<n>We show that the proposed UAlign can significantly enhance the LLMs' capacities to confidently answer known questions.
arXiv Detail & Related papers (2024-12-16T14:14:27Z) - Drawing the Line: Enhancing Trustworthiness of MLLMs Through the Power of Refusal [21.342265570934995]
Existing methods have largely overlooked the importance of refusal responses as a means of enhancing MLLMs reliability.<n>We present the Information Boundary-aware Learning Framework (InBoL), a novel approach that empowers MLLMs to refuse to answer user queries when encountering insufficient information.<n>This framework introduces a comprehensive data generation pipeline and tailored training strategies to improve the model's ability to deliver appropriate refusal responses.
arXiv Detail & Related papers (2024-12-15T14:17:14Z) - A Survey on Uncertainty Quantification of Large Language Models: Taxonomy, Open Research Challenges, and Future Directions [9.045698110081686]
Large language models (LLMs) generate plausible, factually-incorrect responses, which are expressed with striking confidence.<n>Previous work has shown that hallucinations and other non-factual responses generated by LLMs can be detected by examining the uncertainty of the LLM in its response to the pertinent prompt.<n>This survey seeks to provide an extensive review of existing uncertainty quantification methods for LLMs, identifying their salient features, along with their strengths and weaknesses.
arXiv Detail & Related papers (2024-12-07T06:56:01Z) - Understanding the Relationship between Prompts and Response Uncertainty in Large Language Models [55.332004960574004]
Large language models (LLMs) are widely used in decision-making, but their reliability, especially in critical tasks like healthcare, is not well-established.<n>This paper investigates how the uncertainty of responses generated by LLMs relates to the information provided in the input prompt.<n>We propose a prompt-response concept model that explains how LLMs generate responses and helps understand the relationship between prompts and response uncertainty.
arXiv Detail & Related papers (2024-07-20T11:19:58Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
Large language models (LLMs) can reach and even surpass human-level accuracy on a variety of benchmarks, but their overconfidence in incorrect responses is still a well-documented failure mode.
We propose a framework for measuring an LLM's uncertainty with respect to the distribution of generated explanations for an answer.
arXiv Detail & Related papers (2024-06-05T16:35:30Z) - Uncertainty Quantification for In-Context Learning of Large Language Models [52.891205009620364]
In-context learning has emerged as a groundbreaking ability of Large Language Models (LLMs)
We propose a novel formulation and corresponding estimation method to quantify both types of uncertainties.
The proposed method offers an unsupervised way to understand the prediction of in-context learning in a plug-and-play fashion.
arXiv Detail & Related papers (2024-02-15T18:46:24Z) - Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling [69.83976050879318]
In large language models (LLMs), identifying sources of uncertainty is an important step toward improving reliability, trustworthiness, and interpretability.
In this paper, we introduce an uncertainty decomposition framework for LLMs, called input clarification ensembling.
Our approach generates a set of clarifications for the input, feeds them into an LLM, and ensembles the corresponding predictions.
arXiv Detail & Related papers (2023-11-15T05:58:35Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
Open Information Extraction (OIE) task aims at extracting structured facts from unstructured text.
Despite the potential of large language models (LLMs) like ChatGPT as a general task solver, they lag behind state-of-the-art (supervised) methods in OIE tasks.
arXiv Detail & Related papers (2023-09-07T01:35:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.