論文の概要: Detecting Long QT Syndrome and First-Degree Atrioventricular Block using Single-Lead AI-ECG: A Multi-Center Real-World Study
- arxiv url: http://arxiv.org/abs/2502.17499v2
- Date: Sun, 27 Apr 2025 02:46:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-29 18:43:11.193593
- Title: Detecting Long QT Syndrome and First-Degree Atrioventricular Block using Single-Lead AI-ECG: A Multi-Center Real-World Study
- Title(参考訳): シングルリードAI-ECGを用いた長QT症候群と1重心房室ブロックの検出 : 多施設実世界調査
- Authors: Sumei Fan, Deyun Zhang, Yue Wang, Shijia Geng, Kun Lu, Meng Sang, Weilun Xu, Haixue Wang, Qinghao Zhao, Chuandong Cheng, Peng Wang, Shenda Hong,
- Abstract要約: ホームベースのシングルリードAI-ECGデバイスは、継続的、現実世界の心臓モニタリングを可能にした。
本研究では,ECG計測計算アルゴリズムであるFeatureDBを,シングルリードモニタリングの文脈で評価した。
LQTSとAVBIの検出において、FeatureDBは商用ECGシステムに匹敵する診断性能を示した。
- 参考スコア(独自算出の注目度): 12.802249610851181
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Home-based single-lead AI-ECG devices have enabled continuous, real-world cardiac monitoring. However, the accuracy of parameter calculations from single-lead AI-ECG algorithm remains to be fully validated, which is critical for conditions such as Long QT Syndrome (LQTS) and First-Degree Atrioventricular Block (AVBI). In this multicenter study, we assessed FeatureDB, an ECG measurements computation algorithm, in the context of single-lead monitoring using three annotated datasets: PTB-XL+ (n=21,354), CSE (n=105), and HeartVoice-ECG-lite (n=369). FeatureDB showed strong correlation with standard ECG machines (12SL and Uni-G) in key measurements (PR, QRS, QT, QTc), and high agreement confirmed by Bland-Altman analysis. In detecting LQTS (AUC=0.786) and AVBI (AUC=0.684), FeatureDB demonstrated diagnostic performance comparable to commercial ECG systems (12SL: 0.859/0.716; Uni-G: 0.817/0.605), significantly outperforming ECGDeli (0.501/0.569). Notably, FeatureDB can operate locally on resource-limited devices, facilitating use in low-connectivity settings. These findings confirm the clinical reliability of FeatureDB for single-lead ECG diagnostics and highlight its potential to bridge traditional ECG diagnostics with wearable technology for scalable cardiovascular monitoring and early intervention.
- Abstract(参考訳): ホームベースのシングルリードAI-ECGデバイスは、継続的、現実世界の心臓モニタリングを可能にした。
しかし、Long QT syndrome (LQTS) やFirst-Degree Atrioventricular Block (AVBI) などの条件では、シングルリードのAI-ECGアルゴリズムによるパラメータ計算の精度が十分検証されている。
本研究は,PTB-XL+(n=21,354),CSE(n=105),HeartVoice-ECG-lite(n=369)の3つの注釈付きデータセットを用いて,ECG計測計算アルゴリズムであるFeatureDBを評価した。
FeatureDBは、キー測定(PR、QRS、QT、QTc)において標準ECGマシン(12SL、Uni-G)と強い相関を示し、Bland-Altman分析により高い一致を示した。
LQTS (AUC=0.786) とAVBI (AUC=0.684) の検出において、FeatureDBは商用ECGシステム (12SL: 0.859/0.716; Uni-G: 0.817/0.605) に匹敵する診断性能を示し、ECGDeli (0.501/0.569) を上回った。
特に、FeatureDBはリソース制限されたデバイス上でローカルに動作可能で、低接続性設定での使用が容易である。
これらの結果は,単誘導心電図診断のためのFeatureDBの臨床信頼性を確認し,拡張性心血管モニタリングと早期介入のためのウェアラブル技術で従来の心電図診断を橋渡しする可能性を強調した。
関連論文リスト
- xLSTM-ECG: Multi-label ECG Classification via Feature Fusion with xLSTM [14.02717596836022]
本稿では,ECG信号のマルチラベル分類手法であるxLSTM-ECGを提案する。
我々の知る限り、この研究は、マルチラベルECG分類に特化して適応したxLSTMモジュールの設計と応用を表すものである。
論文 参考訳(メタデータ) (2025-04-14T16:12:46Z) - Multimodal Lead-Specific Modeling of ECG for Low-Cost Pulmonary Hypertension Assessment [71.69065905466567]
低所得国や中所得国(LMIC)では,高度な診断ツールが不足しているため,肺高血圧症(PH)が頻繁に診断される。
我々は,大人口12L-ECGデータに基づいて事前学習したモデルであるLS-EMVAE(Lead-Specific Electrocardiogram Multimodal Variational Autoencoder)を提案する。
LS-EMVAEは、推論時に12L-ECGと6L-ECGの両方でより良い予測を行い、診断ツールが限られている領域や全くない領域において、同等の解となる。
論文 参考訳(メタデータ) (2025-03-03T16:16:38Z) - Arrhythmia Classification from 12-Lead ECG Signals Using Convolutional and Transformer-Based Deep Learning Models [0.0]
ルーマニアでは、心臓血管疾患が死因の主要な原因であり、毎年の死者の3分の1近くを占める。
本稿では, 資源制約型医療環境における不整脈診断の効率化, 軽量化, 迅速化を図ることを目的とする。
論文 参考訳(メタデータ) (2025-02-25T06:17:52Z) - Finetuning and Quantization of EEG-Based Foundational BioSignal Models on ECG and PPG Data for Blood Pressure Estimation [53.2981100111204]
光胸腺撮影と心電図は、連続血圧モニタリング(BP)を可能にする可能性がある。
しかし、データ品質と患者固有の要因の変化のため、正確で堅牢な機械学習(ML)モデルは依然として困難である。
本研究では,1つのモータリティで事前学習したモデルを効果的に利用して,異なる信号タイプの精度を向上させる方法について検討する。
本手法は, 拡張期BPの最先端精度を約1.5倍に向上し, 拡張期BPの精度を1.5倍に向上させる。
論文 参考訳(メタデータ) (2025-02-10T13:33:12Z) - rECGnition_v1.0: Arrhythmia detection using cardiologist-inspired multi-modal architecture incorporating demographic attributes in ECG [3.0473237906125954]
本稿では,心電図解析と不整脈分類のための新しいマルチモーダル手法を提案する。
提案したrECGnition_v1.0アルゴリズムはクリニックへの展開の道を開く。
論文 参考訳(メタデータ) (2024-10-09T11:17:02Z) - Self-supervised inter-intra period-aware ECG representation learning for detecting atrial fibrillation [41.82319894067087]
そこで本研究では,周期型ECG表現学習手法を提案する。
心房細動患者の心電図ではRR間隔の不規則性やP波の欠如を考慮し, 経時的および経時的表現のための特定の事前訓練タスクを開発する。
本手法は,発作/持続性心房細動検出のためのBTCHデータセット,textiti., 0.953/0.996におけるAUCの顕著な性能を示す。
論文 参考訳(メタデータ) (2024-10-08T10:03:52Z) - An Electrocardiogram Foundation Model Built on over 10 Million Recordings with External Evaluation across Multiple Domains [17.809094003643523]
ECG Foundation Model (ECGFounder)は、Harvard-Emory ECG Databaseから150のラベルカテゴリを持つ1000万以上のECGをトレーニングしている。
ECGFounderは内部検証セットのエキスパートレベルのパフォーマンスを達成し、AUROCは80の診断で0.95を超えている。
微調整されたECGFounderは、人口統計分析、臨床イベント検出、心拍数横断診断においてベースラインモデルを上回っている。
論文 参考訳(メタデータ) (2024-10-05T12:12:02Z) - Self-supervised Anomaly Detection Pretraining Enhances Long-tail ECG Diagnosis [32.37717219026923]
現在のコンピュータ支援心電図診断システムでは, まれながら重要な心疾患の診断に苦慮している。
本研究は、この制限に対処するために、自己教師付き異常検出プリトレーニングを用いた新しいアプローチを提案する。
異常検出モデルは、正常な心臓パターンからの微妙な偏差を検出し、局所化するように設計されている。
論文 参考訳(メタデータ) (2024-08-30T09:48:47Z) - MEIT: Multi-Modal Electrocardiogram Instruction Tuning on Large Language Models for Report Generation [41.324530807795256]
心電図(Electrocardiogram、ECG)は、心臓の状態をモニタリングするための主要な非侵襲的診断ツールである。
最近の研究は心電図データを用いた心臓状態の分類に集中しているが、心電図レポートの生成は見落としている。
LLMとマルチモーダル命令を用いてECGレポート生成に取り組む最初の試みであるMultimodal ECG Instruction Tuning (MEIT) フレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-07T23:20:56Z) - A Novel Deep Learning Technique for Morphology Preserved Fetal ECG
Extraction from Mother ECG using 1D-CycleGAN [3.4162369786064497]
非侵襲性胎児心電図(fECG)は、発達中の心臓の異常を容易に検出することができる。
fECGの低振幅、系統的および周囲雑音、典型的な信号抽出法は、良好なfECGを生成できない。
本手法は1D CycleGANに基づいて,mECG信号からfECG信号を再構成する。
胎児の心拍数とR-R間隔長に対するソリューションの精度は、既存の最先端技術に匹敵するものである。
論文 参考訳(メタデータ) (2023-09-25T19:38:51Z) - Digital twinning of cardiac electrophysiology models from the surface
ECG: a geodesic backpropagation approach [39.36827689390718]
逆等角問題の解法としてGeodesic-BPを提案する。
その結果,Geodesic-BPは人工心臓の活性化を高精度に再現できることが示唆された。
パーソナライズド医療への将来のシフトを考えると、Geodesic-BPは将来の心臓モデルの機能化に役立つ可能性がある。
論文 参考訳(メタデータ) (2023-08-16T14:57:12Z) - IMLE-Net: An Interpretable Multi-level Multi-channel Model for ECG
Classification [0.9449650062296824]
臨床環境では、心臓科医が標準12チャンネル心電図記録に基づいて診断を行う。
本稿では,標準ECG記録で利用可能なマルチチャネル情報を活用し,ビート,リズム,チャネルレベルのパターンを学習するモデルを提案する。
実験結果から,マクロ平均ROC-AUCスコアは0.9216,平均精度は88.85%,最大F1スコアは0.8057であった。
論文 参考訳(メタデータ) (2022-04-06T16:29:10Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
ECGのデライン化のための既存のデータベースは小さく、サイズやそれらが表す病態の配列に不足している。
まず、原データベースから抽出した基本セグメントのプールを与えられたECGトレースを確率的に合成し、その整合性のある合成トレースに配置するための一連のルールを考案した。
第二に、2つの新しいセグメンテーションに基づく損失関数が開発され、これは、正確な数の独立構造の予測を強制し、サンプル数の削減に焦点をあてて、より密接なセグメンテーション境界を創出することを目的としている。
論文 参考訳(メタデータ) (2021-11-25T10:11:41Z) - Estimation of atrial fibrillation from lead-I ECGs: Comparison with
cardiologists and machine learning model (CurAlive), a clinical validation
study [0.0]
本研究では,人工知能を用いた心房細動検出法を提案する。
本研究の目的は, 心臓科医と人工知能の診断精度をリードI心電図と比較することである。
論文 参考訳(メタデータ) (2021-04-15T12:50:16Z) - Robust R-Peak Detection in Low-Quality Holter ECGs using 1D
Convolutional Neural Network [20.198563425074372]
本論文ではホルターECG信号におけるRピーク検出のための汎用かつ堅牢なシステムを提案する。
1D Convolutional Neural Network(CNN)の新しい実装は、誤報の数を減らすために検証モデルと統合されています。
実験の結果,CPSC-DBでは99.30%のF1スコア,99.69%のリコール,98.91%の精度が得られた。
論文 参考訳(メタデータ) (2020-12-29T21:10:54Z) - Identification of Ischemic Heart Disease by using machine learning
technique based on parameters measuring Heart Rate Variability [50.591267188664666]
本研究は,243名の非侵襲的特徴(年齢,性別,左室容積率,HRV15)を用いて,一連のANNの訓練と評価を行った。
最高の結果は、7つの入力パラメータと7つの隠れノードを使用して、トレーニングと検証データセットに対して98.9%と82%の精度で得られた。
論文 参考訳(メタデータ) (2020-10-29T19:14:41Z) - Multilabel 12-Lead Electrocardiogram Classification Using Gradient
Boosting Tree Ensemble [64.29529357862955]
我々は,心電図の診断を分類するために,形態や信号処理機能に適合した勾配強化木のアンサンブルを用いたアルゴリズムを構築した。
各リードについて、心拍変動、PQRSTテンプレート形状、全信号波形から特徴を導出する。
各クラスに属するECGインスタンスの確率を予測するため、全12項目の特徴と合わせて、勾配を増す決定ツリーの集合に適合する。
論文 参考訳(メタデータ) (2020-10-21T18:11:36Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
ディープラーニング(DL)アルゴリズムは、学術的、産業的にも重くなっている。
セグメンテーションフレームワークにECGの検出とデライン化を組み込むことにより、低解釈タスクにDLをうまく適用できることを実証する。
このモデルは、PhyloNetのQTデータベースを使用して、105個の増幅ECG記録から訓練された。
論文 参考訳(メタデータ) (2020-05-11T16:29:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。