論文の概要: On the usability of generative AI: Human generative AI
- arxiv url: http://arxiv.org/abs/2502.17714v1
- Date: Mon, 24 Feb 2025 23:13:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-26 15:21:35.548350
- Title: On the usability of generative AI: Human generative AI
- Title(参考訳): 生成AIのユーザビリティについて:人間生成AI
- Authors: Anna Ravera, Cristina Gena,
- Abstract要約: 生成可能なAIシステムはコンテンツ生成を変革していますが、ユーザビリティは依然として重要な課題です。
本稿では,ユーザエクスペリエンスや透明性,コントロール,認知的負荷などのユーザビリティ要因について検討する。
- 参考スコア(独自算出の注目度): 1.0435741631709405
- License:
- Abstract: Generative AI systems are transforming content creation, but their usability remains a key challenge. This paper examines usability factors such as user experience, transparency, control, and cognitive load. Common challenges include unpredictability and difficulties in fine-tuning outputs. We review evaluation metrics like efficiency, learnability, and satisfaction, highlighting best practices from various domains. Improving interpretability, intuitive interfaces, and user feedback can enhance usability, making generative AI more accessible and effective.
- Abstract(参考訳): 生成可能なAIシステムはコンテンツ生成を変革していますが、ユーザビリティは依然として重要な課題です。
本稿では,ユーザエクスペリエンスや透明性,コントロール,認知負荷などのユーザビリティ要因について検討する。
よくある課題は、予測不能と微調整出力の難しさである。
我々は、効率性、学習可能性、満足度などの評価指標をレビューし、様々な分野のベストプラクティスを強調した。
解釈性、直感的なインターフェース、ユーザフィードバックの改善により、ユーザビリティが向上し、生成AIがよりアクセスしやすく、効果的になる。
関連論文リスト
- The AI Interface: Designing for the Ideal Machine-Human Experience (Editorial) [1.8074330674710588]
本論では,AI体験デザインの心理学を探求する特集を紹介する。
このコレクションの論文は、人間とAIの相互作用における信頼、透明性、感情的な感受性の複雑さを強調している。
8つの多様な研究から得られた知見により、この論説は、効率と共感のバランスをとるためのAIインターフェースの必要性を強調している。
論文 参考訳(メタデータ) (2024-11-29T15:17:32Z) - Introducing User Feedback-based Counterfactual Explanations (UFCE) [49.1574468325115]
対実的説明(CE)は、XAIで理解可能な説明を生成するための有効な解決策として浮上している。
UFCEは、アクション可能な機能のサブセットで最小限の変更を決定するために、ユーザー制約を含めることができる。
UFCEは、textitproximity(英語版)、textitsparsity(英語版)、textitfeasibility(英語版)の2つのよく知られたCEメソッドより優れている。
論文 参考訳(メタデータ) (2024-02-26T20:09:44Z) - Optimising Human-AI Collaboration by Learning Convincing Explanations [62.81395661556852]
本研究では,人間による意思決定によって安全を保ちながら協調的なシステムを構築する手法を提案する。
Ardentは、説明のための個人の好みに適応することで、効率的で効果的な意思決定を可能にする。
論文 参考訳(メタデータ) (2023-11-13T16:00:16Z) - Predictable Artificial Intelligence [77.1127726638209]
本稿では予測可能なAIのアイデアと課題を紹介する。
それは、現在および将来のAIエコシステムの重要な妥当性指標を予測できる方法を探る。
予測可能性を達成することは、AIエコシステムの信頼、責任、コントロール、アライメント、安全性を促進するために不可欠である、と私たちは主張する。
論文 参考訳(メタデータ) (2023-10-09T21:36:21Z) - The Responsible Development of Automated Student Feedback with Generative AI [6.008616775722921]
AIの最近の進歩、特に大規模言語モデル(LLM)では、スケーラブルで反復可能でインスタントなフィードバックを提供する新たな機会が提示されている。
しかし、これらの技術の実装には、慎重に対処しなければならない多くの倫理的考察も導入されている。
AIシステムの中核となる利点の1つは、ルーチンや日常的なタスクを自動化する能力であり、人間の教育者を解放して、より微妙な仕事をさせる可能性がある。
しかし、自動化の容易さは、少数派や独特な学習者の多様なニーズが見過ごされる「多数派」の暴行を招きかねない。
論文 参考訳(メタデータ) (2023-08-29T14:29:57Z) - VerifAI: Verified Generative AI [22.14231506649365]
生成AIは大きな進歩を遂げているが、その正確性と信頼性に関する懸念は拡大を続けている。
本稿では,データ管理の観点から生成AIの出力を検証することが,生成AIの新たな課題であることを示す。
私たちのビジョンは、検証可能な生成AIの開発を促進し、より信頼性が高く責任あるAIの利用に貢献することです。
論文 参考訳(メタデータ) (2023-07-06T06:11:51Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
我々は、AIライフサイクルにおけるロバストネスの課題を強調し、自動車のメンテナンスに類似させることで、AIのメンテナンスを動機付ける。
本稿では,ロバストネスリスクの検出と軽減を目的としたAIモデル検査フレームワークを提案する。
我々のAIメンテナンスの提案は、AIライフサイクル全体を通して堅牢性評価、状態追跡、リスクスキャン、モデル硬化、規制を促進する。
論文 参考訳(メタデータ) (2023-01-08T15:02:38Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
この分野でのAIのメリット、課題、欠点についてレビューする。
データ拡張、説明可能なAIの使用、従来の実験手法とAIの統合についても論じている。
論文 参考訳(メタデータ) (2022-12-08T23:23:39Z) - Tools and Practices for Responsible AI Engineering [0.5249805590164901]
我々は、責任あるAIエンジニアリングに対する重要なニーズに対処する2つの新しいソフトウェアライブラリを提示する。
hydra-zenは、複雑なAIアプリケーションとその振る舞いを再現するプロセスを劇的に単純化する。
rAI-toolboxは、AIモデルの堅牢性を評価し、拡張する方法を可能にするように設計されている。
論文 参考訳(メタデータ) (2022-01-14T19:47:46Z) - Trustworthy AI [75.99046162669997]
入力データの小さな敵対的変化への脆さ、決定の説明能力、トレーニングデータのバイアスに対処する能力は、最も顕著な制限である。
我々は,AIシステムに対するユーザおよび公的な信頼を高める上での6つの重要な問題に対処するために,信頼に値するAIに関するチュートリアルを提案する。
論文 参考訳(メタデータ) (2020-11-02T20:04:18Z) - On Interactive Machine Learning and the Potential of Cognitive Feedback [2.320417845168326]
対話型機械学習を導入し、その利点と限界を防衛的応用の文脈で説明する。
我々は、自己報告、暗黙的な認知フィードバック、モデル化された認知フィードバックの3つの手法を定義した。
論文 参考訳(メタデータ) (2020-03-23T16:28:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。