論文の概要: AfroXLMR-Comet: Multilingual Knowledge Distillation with Attention Matching for Low-Resource languages
- arxiv url: http://arxiv.org/abs/2502.18020v1
- Date: Tue, 25 Feb 2025 09:28:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-26 15:23:56.568809
- Title: AfroXLMR-Comet: Multilingual Knowledge Distillation with Attention Matching for Low-Resource languages
- Title(参考訳): AfroXLMR-Comet:低リソース言語に対する注意マッチングを用いた多言語知識蒸留
- Authors: Joshua Sakthivel Raju, Sanjay S, Jaskaran Singh Walia, Srinivas Raghav, Vukosi Marivate,
- Abstract要約: 本稿では,従来の知識蒸留と簡易な注意マッチング機構を組み合わせた新しいハイブリッド蒸留手法を提案する。
我々は、キニルワンダ、スワヒリ、ハウサ、イグボ、ヨルバの5つのアフリカの言語に対する我々のアプローチを評価した。
- 参考スコア(独自算出の注目度): 0.19381162067627603
- License:
- Abstract: Language model compression through knowledge distillation has emerged as a promising approach for deploying large language models in resource-constrained environments. However, existing methods often struggle to maintain performance when distilling multilingual models, especially for low-resource languages. In this paper, we present a novel hybrid distillation approach that combines traditional knowledge distillation with a simplified attention matching mechanism, specifically designed for multilingual contexts. Our method introduces an extremely compact student model architecture, significantly smaller than conventional multilingual models. We evaluate our approach on five African languages: Kinyarwanda, Swahili, Hausa, Igbo, and Yoruba. The distilled student model; AfroXLMR-Comet successfully captures both the output distribution and internal attention patterns of a larger teacher model (AfroXLMR-Large) while reducing the model size by over 85%. Experimental results demonstrate that our hybrid approach achieves competitive performance compared to the teacher model, maintaining an accuracy within 85% of the original model's performance while requiring substantially fewer computational resources. Our work provides a practical framework for deploying efficient multilingual models in resource-constrained environments, particularly benefiting applications involving African languages.
- Abstract(参考訳): 知識蒸留による言語モデル圧縮は,資源制約のある環境で大規模言語モデルを展開するための有望なアプローチとして現れてきた。
しかし、既存の手法は、特に低リソース言語において、多言語モデルを蒸留する際に性能を維持するのに苦労することが多い。
本稿では,従来の知識蒸留と簡易な注意マッチング機構を組み合わせたハイブリッド蒸留手法を提案する。
提案手法は,従来の多言語モデルよりもはるかに小さい,非常にコンパクトな学生モデルアーキテクチャを提案する。
我々は、キニルワンダ、スワヒリ、ハウサ、イグボ、ヨルバの5つのアフリカの言語に対する我々のアプローチを評価した。
蒸留した学生モデルであるAfroXLMR-Cometは、より大きな教師モデル(AfroXLMR-Large)の出力分布と内部の注意パターンの両方を捕捉し、モデルサイズを85%以上削減することに成功した。
実験結果から,本手法は教師モデルと比較して競争性能が向上し,従来のモデルの性能の85%以内の精度を維持しつつ,計算資源の大幅な削減を図っている。
我々の研究は、資源制約のある環境で効率的な多言語モデルをデプロイするための実践的なフレームワークを提供する。
関連論文リスト
- InkubaLM: A small language model for low-resource African languages [9.426968756845389]
InkubaLMは0.4億のパラメータを持つ小さな言語モデルである。
パラメータ数が大幅に大きいモデルに匹敵するパフォーマンスを実現する。
複数の言語にまたがる顕著な一貫性を示す。
論文 参考訳(メタデータ) (2024-08-30T05:42:31Z) - Unlocking the Potential of Model Merging for Low-Resource Languages [66.7716891808697]
大規模言語モデルを新しい言語に適応させるには、通常、継続事前訓練(CT)と、教師付き微調整(SFT)が含まれる。
我々は低リソース言語の代替としてモデルマージを提案し、異なる機能を持つモデルを追加トレーニングなしで単一のモデルに組み合わせる。
Llama-2-7Bをベースとした実験により、モデルマージはタスク解決能力の低い低リソース言語に対して、極めて少ないデータを持つシナリオにおいて、CT-then-SFTよりも優れていることが実証された。
論文 参考訳(メタデータ) (2024-07-04T15:14:17Z) - MoE-CT: A Novel Approach For Large Language Models Training With Resistance To Catastrophic Forgetting [53.77590764277568]
ベースモデルの学習を多言語拡張プロセスから分離する新しいMoE-CTアーキテクチャを提案する。
我々の設計では、元のLLMパラメータを凍結し、高リソース言語のパフォーマンスを保護しますが、様々な言語データセットに基づいてトレーニングされたMoEモジュールは、低リソース言語の習熟度を向上します。
論文 参考訳(メタデータ) (2024-06-25T11:03:45Z) - Efficient Compression of Multitask Multilingual Speech Models [0.0]
DistilWhisperは、マルチタスクとマルチ言語機能の利点を維持しながら、これらの言語におけるASRのパフォーマンスギャップを埋めることができる。
提案手法は, 言語専門家を用いた軽量モジュール型ASR微調整と, ささやかな大口径v2からの知識蒸留の2つの戦略を含む。
論文 参考訳(メタデータ) (2024-05-02T03:11:59Z) - Tele-FLM Technical Report [96.19923831660266]
52Bのオープンソース多言語大言語モデルであるTele-FLM(別名FLM-2)を紹介する。
安定的で効率的な事前訓練のパラダイムと、事実判断能力の強化が特徴である。
これは、Llama2-70BやDeepSeek-67Bのようなより大きな事前学習FLOPを含む強力なオープンソースモデルに匹敵する。
論文 参考訳(メタデータ) (2024-04-25T14:34:47Z) - Cross-Lingual NER for Financial Transaction Data in Low-Resource
Languages [70.25418443146435]
半構造化テキストデータにおける言語間名前認識のための効率的なモデリングフレームワークを提案する。
我々は2つの独立したSMSデータセットを英語とアラビア語で使用し、それぞれが半構造化された銀行取引情報を持っている。
わずか30のラベル付きサンプルにアクセスすることで、我々のモデルは、英語からアラビア語までの商人、金額、その他の分野の認識を一般化することができる。
論文 参考訳(メタデータ) (2023-07-16T00:45:42Z) - Too Brittle To Touch: Comparing the Stability of Quantization and
Distillation Towards Developing Lightweight Low-Resource MT Models [12.670354498961492]
最先端の機械翻訳モデルは、しばしば低リソース言語のデータに適応することができる。
知識蒸留(Knowledge Distillation)は、競争力のある軽量モデルを開発するための一般的な技術である。
論文 参考訳(メタデータ) (2022-10-27T05:30:13Z) - Specializing Multilingual Language Models: An Empirical Study [50.7526245872855]
事前訓練された多言語モデルからの文脈化語表現は、自然言語タスクに対処するデファクトスタンダードとなっている。
これらのモデルではまれに、あるいは一度も見られない言語では、そのようなモデルを直接使用すると、最適な表現やデータの使用につながることが多い。
論文 参考訳(メタデータ) (2021-06-16T18:13:55Z) - Collective Wisdom: Improving Low-resource Neural Machine Translation
using Adaptive Knowledge Distillation [42.38435539241788]
並列文ペアの空白は、バイリンガルで低リソースのシナリオで高品質なニューラルネットワーク翻訳(NMT)モデルをトレーニングする上で、大きなハードルとなる。
そこで本研究では, 蒸留過程における教師モデルの貢献度を動的に調整する適応的知識蒸留手法を提案する。
IWSLTからTED Talksから低リソースの5つの言語ペアへ6つの言語ペアのコレクションを転送する実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2020-10-12T04:26:46Z) - Structure-Level Knowledge Distillation For Multilingual Sequence
Labeling [73.40368222437912]
本稿では,複数の単言語モデルの構造的知識を統一多言語モデル(学生)に蒸留することにより,単言語モデルと統一多言語モデルとのギャップを低減することを提案する。
25のデータセットを用いた4つの多言語タスクの実験により、我々のアプローチはいくつかの強いベースラインを上回り、ベースラインモデルと教師モデルの両方よりも強力なゼロショット一般化性を有することが示された。
論文 参考訳(メタデータ) (2020-04-08T07:14:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。