Liver Cirrhosis Stage Estimation from MRI with Deep Learning
- URL: http://arxiv.org/abs/2502.18225v1
- Date: Sun, 23 Feb 2025 20:50:08 GMT
- Title: Liver Cirrhosis Stage Estimation from MRI with Deep Learning
- Authors: Jun Zeng, Debesh Jha, Ertugrul Aktas, Elif Keles, Alpay Medetalibeyoglu, Matthew Antalek, Amir A. Borhani, Daniela P. Ladner, Gorkem Durak, Ulas Bagci,
- Abstract summary: We present an end-to-end deep learning framework for automated liver cirrhosis stage estimation from multi-sequence MRI.<n>Our approach integrates multi-scale feature learning with sequence-specific attention mechanisms to capture subtle tissue variations across cirrhosis progression stages.<n>Our best model achieves 72.8% accuracy on T1W and 63.8% on T2W sequences, significantly outperforming traditional radiomics-based approaches.
- Score: 8.624095515251993
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present an end-to-end deep learning framework for automated liver cirrhosis stage estimation from multi-sequence MRI. Cirrhosis is the severe scarring (fibrosis) of the liver and a common endpoint of various chronic liver diseases. Early diagnosis is vital to prevent complications such as decompensation and cancer, which significantly decreases life expectancy. However, diagnosing cirrhosis in its early stages is challenging, and patients often present with life-threatening complications. Our approach integrates multi-scale feature learning with sequence-specific attention mechanisms to capture subtle tissue variations across cirrhosis progression stages. Using CirrMRI600+, a large-scale publicly available dataset of 628 high-resolution MRI scans from 339 patients, we demonstrate state-of-the-art performance in three-stage cirrhosis classification. Our best model achieves 72.8% accuracy on T1W and 63.8% on T2W sequences, significantly outperforming traditional radiomics-based approaches. Through extensive ablation studies, we show that our architecture effectively learns stage-specific imaging biomarkers. We establish new benchmarks for automated cirrhosis staging and provide insights for developing clinically applicable deep learning systems. The source code will be available at https://github.com/JunZengz/CirrhosisStage.
Related papers
- ColonScopeX: Leveraging Explainable Expert Systems with Multimodal Data for Improved Early Diagnosis of Colorectal Cancer [3.541280502270993]
Colorectal cancer (CRC) ranks as the second leading cause of cancer-related deaths and the third most prevalent malignant tumour worldwide.
Early detection of CRC remains problematic due to its non-specific and often embarrassing symptoms.
We propose ColonScopeX, a machine learning framework utilizing explainable AI (XAI) methodologies to enhance the early detection of CRC and pre-cancerous lesions.
arXiv Detail & Related papers (2025-04-09T20:45:11Z) - MPBD-LSTM: A Predictive Model for Colorectal Liver Metastases Using Time Series Multi-phase Contrast-Enhanced CT Scans [8.437136847051546]
We build upon state-of-the-art deep learning techniques to evaluate how to best predict colorectal cancer liver metastasis.<n>Our experimental results show that a multi-plane architecture based on 3D bi-directional LSTM, which we call MPBD-LSTM, works best.
arXiv Detail & Related papers (2024-12-02T21:02:11Z) - CirrMRI600+: Large Scale MRI Collection and Segmentation of Cirrhotic Liver [1.3157208364269697]
Liver cirrhosis, the end stage of chronic liver disease, is characterized by extensive bridging fibrosis and nodular regeneration.
Early diagnosis and management of end-stage cirrhosis are significant clinical challenges.
Deep learning (DL) offers a promising solution for automatically segmenting and recognizing cirrhotic livers in MRI scans.
CirrMRI600+ is an extensive dataset of abdominal MRI scans with annotated segmentation labels for cirrhotic livers.
arXiv Detail & Related papers (2024-10-06T20:24:41Z) - Semi-supervised ViT knowledge distillation network with style transfer
normalization for colorectal liver metastases survival prediction [1.283897253352624]
We propose an end-to-end approach for automated prognosis prediction using histology slides stained with H&E and HPS.
We first employ a Generative Adversarial Network (GAN) for slide normalization to reduce staining variations and improve the overall quality of the images that are used as input to our prediction pipeline.
We exploit the extracted features for the metastatic nodules and surrounding tissue to train a prognosis model. In parallel, we train a vision Transformer (ViT) in a knowledge distillation framework to replicate and enhance the performance of the prognosis prediction.
arXiv Detail & Related papers (2023-11-17T03:32:11Z) - Domain Transfer Through Image-to-Image Translation for Uncertainty-Aware Prostate Cancer Classification [42.75911994044675]
We present a novel approach for unpaired image-to-image translation of prostate MRIs and an uncertainty-aware training approach for classifying clinically significant PCa.
Our approach involves a novel pipeline for translating unpaired 3.0T multi-parametric prostate MRIs to 1.5T, thereby augmenting the available training data.
Our experiments demonstrate that the proposed method significantly improves the Area Under ROC Curve (AUC) by over 20% compared to the previous work.
arXiv Detail & Related papers (2023-07-02T05:26:54Z) - A Cascaded Approach for ultraly High Performance Lesion Detection and
False Positive Removal in Liver CT Scans [15.352636778576171]
Liver cancer has high morbidity and mortality rates in the world.
Automatically detecting and classifying liver lesions in CT images have the potential to improve the clinical workflow.
In this work, we customize a multi-object labeling tool for multi-phase CT images.
arXiv Detail & Related papers (2023-06-28T09:11:34Z) - Risk Classification of Brain Metastases via Radiomics, Delta-Radiomics
and Machine Learning [7.165205048529115]
We hypothesized that using radiomics and machine learning (ML), metastases at high risk for subsequent progression could be identified during follow-up prior to the onset of significant tumor growth.
The classification is realized via the maximum-relevance minimal-redundancy (MRMR) technique and support vector machines (SVM)
The results indicate that risk stratification of BM based on radiomics and machine learning during post-SRT follow-up is possible with good accuracy and should be further pursued to personalize and improve post-SRT follow-up.
arXiv Detail & Related papers (2023-02-17T10:55:18Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
We propose to leverage transfer learning from large datasets annotated by radiologists, to predict the histological score available on a small annex dataset.
We compare different pretraining methods, namely weakly-supervised and self-supervised ones, to improve the prediction of the cirrhosis.
This method outperforms the baseline classification of the METAVIR score, reaching an AUC of 0.84 and a balanced accuracy of 0.75.
arXiv Detail & Related papers (2023-02-16T17:06:23Z) - CoRe: An Automated Pipeline for The Prediction of Liver Resection
Complexity from Preoperative CT Scans [53.561797148529664]
Tumors located in critical positions are known to complexify liver resections.
CoRe is an automated medical image processing pipeline for the prediction of postoperative LR complexity.
arXiv Detail & Related papers (2022-10-15T15:29:24Z) - SpineOne: A One-Stage Detection Framework for Degenerative Discs and
Vertebrae [54.751251046196494]
We propose a one-stage detection framework termed SpineOne to simultaneously localize and classify degenerative discs and vertebrae from MRI slices.
SpineOne is built upon the following three key techniques: 1) a new design of the keypoint heatmap to facilitate simultaneous keypoint localization and classification; 2) the use of attention modules to better differentiate the representations between discs and vertebrae; and 3) a novel gradient-guided objective association mechanism to associate multiple learning objectives at the later training stage.
arXiv Detail & Related papers (2021-10-28T12:59:06Z) - M3Lung-Sys: A Deep Learning System for Multi-Class Lung Pneumonia
Screening from CT Imaging [85.00066186644466]
We propose a Multi-task Multi-slice Deep Learning System (M3Lung-Sys) for multi-class lung pneumonia screening from CT imaging.
In addition to distinguish COVID-19 from Healthy, H1N1, and CAP cases, our M 3 Lung-Sys also be able to locate the areas of relevant lesions.
arXiv Detail & Related papers (2020-10-07T06:22:24Z) - Multiple Sclerosis Lesion Activity Segmentation with Attention-Guided
Two-Path CNNs [49.32653090178743]
convolutional neural networks (CNNs) are studied for lesion activity segmentation from two time points.
CNNs are designed and evaluated that combine the information from two points in different ways.
It is demonstrated that deep learning-based methods outperform classic approaches.
arXiv Detail & Related papers (2020-08-05T08:49:20Z) - Spatio-spectral deep learning methods for in-vivo hyperspectral
laryngeal cancer detection [49.32653090178743]
Early detection of head and neck tumors is crucial for patient survival.
Hyperspectral imaging (HSI) can be used for non-invasive detection of head and neck tumors.
We present multiple deep learning techniques for in-vivo laryngeal cancer detection based on HSI.
arXiv Detail & Related papers (2020-04-21T17:07:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.