論文の概要: Programming with Pixels: Computer-Use Meets Software Engineering
- arxiv url: http://arxiv.org/abs/2502.18525v1
- Date: Mon, 24 Feb 2025 18:41:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-27 14:59:36.722273
- Title: Programming with Pixels: Computer-Use Meets Software Engineering
- Title(参考訳): Pixelを使ったプログラミング: コンピュータユースとソフトウェア工学
- Authors: Pranjal Aggarwal, Sean Welleck,
- Abstract要約: 汎用コンピュータ利用エージェントは、ハンドエンジニアリングツールを必要とせずに、様々なSWEタスクで特殊なツールベースのエージェントに近づいたり、超えたりすることができる。
ソフトウェアエンジニアリングエージェントの次の波を構築し評価するためのスケーラブルなテストベッドとしてPwPを確立した。
- 参考スコア(独自算出の注目度): 24.00640679767529
- License:
- Abstract: Recent advancements in software engineering (SWE) agents have largely followed a $\textit{tool-based paradigm}$, where agents interact with hand-engineered tool APIs to perform specific tasks. While effective for specialized tasks, these methods fundamentally lack generalization, as they require predefined tools for each task and do not scale across programming languages and domains. We introduce $\texttt{Programming with Pixels}$ (PwP), an agent environment that unifies software development tasks by enabling $\textit{computer-use agents}$-agents that operate directly within an IDE through visual perception, typing, and clicking, rather than relying on predefined tool APIs. To systematically evaluate these agents, we propose $\texttt{PwP-Bench}$, a benchmark that unifies existing SWE benchmarks spanning tasks across multiple programming languages, modalities, and domains under a task-agnostic state and action space. Our experiments demonstrate that general-purpose computer-use agents can approach or even surpass specialized tool-based agents on a variety of SWE tasks without the need for hand-engineered tools. However, our analysis shows that current models suffer from limited visual grounding and fail to exploit many IDE tools that could simplify their tasks. When agents can directly access IDE tools, without visual interaction, they show significant performance improvements, highlighting the untapped potential of leveraging built-in IDE capabilities. Our results establish PwP as a scalable testbed for building and evaluating the next wave of software engineering agents. We release code and data at https://programmingwithpixels.com
- Abstract(参考訳): ソフトウェアエンジニアリング(SWE)エージェントの最近の進歩は、エージェントが手作業で特定のタスクを実行するためのツールAPIと対話する、$\textit{tool-based paradigm}$に大きく追随している。
専門的なタスクには有効であるが、これらのメソッドは、各タスクに事前に定義されたツールを必要とし、プログラミング言語やドメインをまたいでスケールしないため、基本的には一般化を欠いている。
これは、事前に定義されたツールAPIに頼るのではなく、視覚的知覚、タイピング、クリックを通じてIDE内で直接動作する$\textit{computer-use Agent}$-agentsを有効にすることで、ソフトウェア開発タスクを統一するエージェント環境です。
これらのエージェントを体系的に評価するために、複数のプログラミング言語、モダリティ、ドメインにまたがる既存のSWEベンチマークをタスクに依存しない状態とアクション空間下で統一するベンチマークである$\textt{PwP-Bench}$を提案する。
本実験は, 汎用コンピュータ利用エージェントが, ハンドエンジニアリングツールを必要とせずに, 様々なSWEタスクにおいて, 特殊なツールベースエージェントにアプローチしたり, 追い越したりできることを示した。
しかし、我々の分析によると、現在のモデルは視覚的な接地が限られており、タスクを単純化できる多くのIDEツールを活用できない。
エージェントが視覚的な相互作用なしにIDEツールに直接アクセスできる場合、それらは大きなパフォーマンス改善を示し、組み込みIDE機能を活用する未完成の可能性を強調している。
ソフトウェアエンジニアリングエージェントの次の波を構築し評価するためのスケーラブルなテストベッドとしてPwPを確立した。
コードとデータはhttps://mingwithpixels.comで公開しています。
関連論文リスト
- LLM Agents Making Agent Tools [2.5529148902034637]
ツールの使用は、大規模言語モデル(LLM)を、複雑なマルチステップタスクを実行できる強力なエージェントに変えた。
論文をコードで自律的にLLM互換のツールに変換する新しいエージェントフレームワークであるToolMakerを提案する。
タスク記述とリポジトリURLが短いので、ToolMakerは必要な依存関係を自律的にインストールし、タスクを実行するコードを生成する。
論文 参考訳(メタデータ) (2025-02-17T11:44:11Z) - MetaTool: Facilitating Large Language Models to Master Tools with Meta-task Augmentation [25.360660222418183]
再利用可能なツールセットにまたがって一般化するために設計された,新しいツール学習手法であるMetaToolを紹介する。
メタタスクデータをタスク指向トレーニングに組み込むことで,オープンソースの大規模言語モデルの性能を大幅に向上させる。
論文 参考訳(メタデータ) (2024-07-15T10:15:41Z) - Agentless: Demystifying LLM-based Software Engineering Agents [12.19683999553113]
Agentless - ソフトウェア開発の問題を自動解決するためのエージェントレスアプローチです。
Agentlessはエージェントベースのアプローチの冗長で複雑な設定と比較すると、ローカライゼーション、修復、パッチ検証の3フェーズプロセスをシンプルに採用している。
人気の高いSWE-bench Liteベンチマークの結果から、Agentlessは驚くほど高いパフォーマンスと低コストを達成できることがわかった。
論文 参考訳(メタデータ) (2024-07-01T17:24:45Z) - CAAP: Context-Aware Action Planning Prompting to Solve Computer Tasks with Front-End UI Only [21.054681757006385]
本稿では,スクリーンショット画像のみを通して環境を知覚するエージェントを提案する。
大規模言語モデルの推論能力を活用することで,大規模人間の実演データの必要性を解消する。
AgentはMiniWoB++の平均成功率は94.5%、WebShopの平均タスクスコアは62.3である。
論文 参考訳(メタデータ) (2024-06-11T05:21:20Z) - SWE-agent: Agent-Computer Interfaces Enable Automated Software Engineering [79.07755560048388]
SWEエージェント(SWE-agent)は、LMエージェントが自律的にコンピュータを使用してソフトウェア工学のタスクを解決するシステムである。
SWEエージェントのカスタムエージェントコンピュータインタフェース(ACI)は、エージェントがコードファイルを作成し編集し、リポジトリ全体をナビゲートし、テストやその他のプログラムを実行する能力を著しく向上させる。
我々はSWE-benchとHumanEvalFixのSWE-agentを評価し、それぞれ12.5%と87.7%のパス@1レートで最先端の性能を実現した。
論文 参考訳(メタデータ) (2024-05-06T17:41:33Z) - AgentStudio: A Toolkit for Building General Virtual Agents [57.02375267926862]
一般的な仮想エージェントは、マルチモーダルな観察、複雑なアクション空間のマスター、動的でオープンなドメイン環境における自己改善を扱う必要がある。
AgentStudioは、非常に汎用的な観察とアクション空間を備えた軽量でインタラクティブな環境を提供する。
オンラインベンチマークタスクの作成、GUI要素の注釈付け、ビデオ内のアクションのラベル付けといったツールを統合する。
環境とツールに基づいて、GUIインタラクションと関数呼び出しの両方を効率的な自動評価でベンチマークするオンラインタスクスイートをキュレートします。
論文 参考訳(メタデータ) (2024-03-26T17:54:15Z) - What Are Tools Anyway? A Survey from the Language Model Perspective [67.18843218893416]
言語モデル(LM)は強力だが、主にテキスト生成タスクに向いている。
LMが使用する外部プログラムとしてツールを統一的に定義する。
各種ツールの効率を実証的に検討した。
論文 参考訳(メタデータ) (2024-03-18T17:20:07Z) - ScreenAgent: A Vision Language Model-driven Computer Control Agent [17.11085071288194]
視覚言語モデル(VLM)エージェントが実際のコンピュータ画面と対話する環境を構築する。
この環境では、エージェントは、マウスとキーボードのアクションを出力することで、スクリーンショットを観察し、GUI(Graphics User Interface)を操作することができる。
そこで,ScreenAgentデータセットを構築し,様々なコンピュータタスクの完了時にスクリーンショットとアクションシーケンスを収集する。
論文 参考訳(メタデータ) (2024-02-09T02:33:45Z) - Planning, Creation, Usage: Benchmarking LLMs for Comprehensive Tool Utilization in Real-World Complex Scenarios [93.68764280953624]
UltraToolは、ツール利用におけるLarge Language Modelsの能力を改善し評価するために設計された、新しいベンチマークである。
現実の複雑さを強調し、効果的な問題解決のために正確で多段階の計画を必要とする。
UltraToolの重要な特徴は、ツールの使用前に発生する自然言語による計画の独立した評価である。
論文 参考訳(メタデータ) (2024-01-30T16:52:56Z) - ControlLLM: Augment Language Models with Tools by Searching on Graphs [97.62758830255002]
我々は,大規模言語モデル(LLM)が実世界のタスクを解くためのマルチモーダルツールを利用できる新しいフレームワークであるControlLLMを提案する。
フレームワークは,(1)複雑なタスクを明確なサブタスクに分割し,入力と出力を適切に定義したサブタスクに分解するtextittask Decomposer,(2)構築済みのツールグラフ上で最適なソリューションパスを探索する textitThoughts-on-Graph(ToG)パラダイム,(3)ソリューションパスを解釈して実行するリッチなツールボックスを備えた textitexecution Engine,の3つの主要なコンポーネントから構成される。
論文 参考訳(メタデータ) (2023-10-26T21:57:21Z) - ART: Automatic multi-step reasoning and tool-use for large language
models [105.57550426609396]
大規模言語モデル(LLM)は、数秒とゼロショットの設定で複雑な推論を行うことができる。
各推論ステップは、コアLLM機能を超えて計算をサポートする外部ツールに依存することができる。
プログラムとして中間推論ステップを自動生成するために凍結LDMを使用するフレームワークであるART(Automatic Reasoning and Tool-use)を導入する。
論文 参考訳(メタデータ) (2023-03-16T01:04:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。