論文の概要: NeuroTree: Hierarchical Functional Brain Pathway Decoding for Mental Health Disorders
- arxiv url: http://arxiv.org/abs/2502.18786v3
- Date: Fri, 23 May 2025 06:37:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-26 15:51:02.847008
- Title: NeuroTree: Hierarchical Functional Brain Pathway Decoding for Mental Health Disorders
- Title(参考訳): NeuroTree:精神疾患に対する階層型機能的脳経路復号法
- Authors: Jun-En Ding, Dongsheng Luo, Anna Zilverstand, Kaustubh Kulkarni, Feng Liu,
- Abstract要約: 我々は、k-hop AGE-GCNとニューラル常微分方程式(ODE)とコントラッシブマスク機能接続(CMFC)を統合した学習可能なNeuroTreeフレームワークを提案する。
NeuroTreeはfMRIネットワーク機能を木構造に効果的にデコードし、高次脳局所経路の特徴の捕捉を改善する。
これは、年齢に関連する劣化パターンに関する貴重な洞察を与え、その基盤となる神経機構を解明する。
- 参考スコア(独自算出の注目度): 8.204402796073824
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Mental disorders are among the most widespread diseases globally. Analyzing functional brain networks through functional magnetic resonance imaging (fMRI) is crucial for understanding mental disorder behaviors. Although existing fMRI-based graph neural networks (GNNs) have demonstrated significant potential in brain network feature extraction, they often fail to characterize complex relationships between brain regions and demographic information in mental disorders. To overcome these limitations, we propose a learnable NeuroTree framework that integrates a k-hop AGE-GCN with neural ordinary differential equations (ODEs) and contrastive masked functional connectivity (CMFC) to enhance similarities and dissimilarities of brain region distance. Furthermore, NeuroTree effectively decodes fMRI network features into tree structures, which improves the capture of high-order brain regional pathway features and enables the identification of hierarchical neural behavioral patterns essential for understanding disease-related brain subnetworks. Our empirical evaluations demonstrate that NeuroTree achieves state-of-the-art performance across two distinct mental disorder datasets. It provides valuable insights into age-related deterioration patterns, elucidating their underlying neural mechanisms.
- Abstract(参考訳): 精神疾患は世界中で最も広く見られる疾患の一つである。
機能的磁気共鳴イメージング(fMRI)による機能的脳ネットワークの分析は、精神障害の行動を理解する上で重要である。
既存のfMRIベースのグラフニューラルネットワーク(GNN)は、脳ネットワークの特徴抽出において大きな可能性を示しているが、脳の領域と精神疾患における人口統計情報の複雑な関係を特徴づけることができないことが多い。
これらの制約を克服するために、k-hop AGE-GCNとニューラル常微分方程式(ODE)とコントラストマスク機能接続(CMFC)を統合し、脳領域距離の類似性と相違性を高める学習可能なNeuroTreeフレームワークを提案する。
さらに、NeuroTreeはfMRIネットワークの機能を木構造に効果的にデコードし、高次脳局所経路の特徴の捕捉を改善し、疾患関連脳サブネットの理解に必要な階層的神経行動パターンの同定を可能にする。
我々の経験的評価は、NeuroTreeが2つの異なる精神障害データセットで最先端のパフォーマンスを達成することを示す。
これは、年齢に関連する劣化パターンに関する貴重な洞察を与え、その基盤となる神経機構を解明する。
関連論文リスト
- Spatiotemporal Learning of Brain Dynamics from fMRI Using Frequency-Specific Multi-Band Attention for Cognitive and Psychiatric Applications [5.199807441687141]
我々は、fMRIから周波数特異的脳波をモデル化するトランスフォーマーベースのフレームワークであるMulti-Band Brain Net(MBBN)を紹介する。
MBBNは3つの大規模なニューロイメージングコホートで45,951人の個人を訓練し、これまで検出できなかった周波数依存性のネットワーク相互作用を明らかにした。
MBBNは最先端の手法よりも予測精度が30.59%高い。
論文 参考訳(メタデータ) (2025-03-30T10:56:50Z) - BrainMAP: Learning Multiple Activation Pathways in Brain Networks [77.15180533984947]
本稿では,脳ネットワークにおける複数の活性化経路を学習するための新しいフレームワークであるBrainMAPを紹介する。
本フレームワークは,タスクに関わる重要な脳領域の説明的分析を可能にする。
論文 参考訳(メタデータ) (2024-12-23T09:13:35Z) - Brain-like Functional Organization within Large Language Models [58.93629121400745]
人間の脳は長い間人工知能(AI)の追求にインスピレーションを与えてきた
最近のニューロイメージング研究は、人工ニューラルネットワーク(ANN)の計算的表現と、人間の脳の刺激に対する神経反応との整合性の説得力のある証拠を提供する。
本研究では、人工ニューロンのサブグループと機能的脳ネットワーク(FBN)を直接結合することで、このギャップを埋める。
このフレームワークはANサブグループをFBNにリンクし、大きな言語モデル(LLM)内で脳に似た機能的組織を記述できる。
論文 参考訳(メタデータ) (2024-10-25T13:15:17Z) - Parsing altered brain connectivity in neurodevelopmental disorders by integrating graph-based normative modeling and deep generative networks [1.2115617129203957]
神経型接続パターンからの分岐の定量化は、診断と治療の介入を知らせる有望な経路を提供する。
本稿では,生物にインスパイアされた深層生成モデルと規範的モデリングを統合したBRIDGEフレームワークによる脳表現について述べる。
BRIDGEは、接続ベースの脳年齢と時間年齢の違いに基づくグローバルなニューロディバージェンススコアと、局所的な接続性の違いを強調する地域的なニューロディバージェンスマップを提供する。
論文 参考訳(メタデータ) (2024-10-14T20:21:11Z) - Brain-Aware Readout Layers in GNNs: Advancing Alzheimer's early Detection and Neuroimaging [1.074960192271861]
本研究では,グラフニューラルネットワーク(GNN)のための新しい脳認識読み出し層(BA読み出し層)を提案する。
機能的接続とノード埋め込みに基づく脳領域のクラスタリングによって、このレイヤは、複雑な脳ネットワーク特性をキャプチャするGNNの機能を改善する。
以上の結果から,BA読み出し層を有するGNNは,プレクリニカルアルツハイマー認知複合度(PACC)の予測において,従来のモデルよりも有意に優れていた。
論文 参考訳(メタデータ) (2024-10-03T05:04:45Z) - NeuroPath: A Neural Pathway Transformer for Joining the Dots of Human Connectomes [4.362614418491178]
本稿では, FCのユビキタスインスタンスが, SCによって物理的に配線された神経経路(デトゥール)によってどのようにサポートされているかを明らかにするために, トポロジカルデトゥールの概念を導入する。
機械学習のclich'eでは、SC-FCカップリングの基礎となるマルチホップデトゥール経路により、新しいマルチヘッド自己保持機構を考案することができる。
バイオインスパイアされたニューロパス(NeuroPath)と呼ばれる深層モデルを提案し,これまでにない量のニューロイメージから有意な結合性特徴表現を求める。
論文 参考訳(メタデータ) (2024-09-26T03:40:12Z) - Large Language Model-based FMRI Encoding of Language Functions for Subjects with Neurocognitive Disorder [53.575426835313536]
LLMを用いたfMRIエンコーディングと脳のスコアを用いた高齢者の言語関連機能変化について検討する。
脳のスコアと認知スコアの相関関係を脳全体のROIと言語関連ROIの両方で分析した。
以上の結果から,認知能力の向上は,中側頭回に有意な相関がみられた。
論文 参考訳(メタデータ) (2024-07-15T01:09:08Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
本研究では,まず動的因果モデルを用いて脳効果ネットワークを構築する。
次に、STE-ODE(Spatio-Temporal Embedding ODE)と呼ばれる解釈可能なグラフ学習フレームワークを導入する。
このフレームワークは、構造的および効果的なネットワーク間の動的相互作用を捉えることを目的とした、特異的に設計されたノード埋め込み層を含んでいる。
論文 参考訳(メタデータ) (2024-05-21T20:37:07Z) - Exploring General Intelligence via Gated Graph Transformer in Functional
Connectivity Studies [39.82681427764513]
Gated Graph Transformer (GGT) フレームワークは,機能的接続性(FC)に基づく認知的メトリクスの予測を目的としている
フィラデルフィア神経発達コホート(PNC)に関する実証的検証は,我々のモデルにおいて優れた予測能力を示している。
論文 参考訳(メタデータ) (2024-01-18T19:28:26Z) - Constraints on the design of neuromorphic circuits set by the properties
of neural population codes [61.15277741147157]
脳内では、情報はコード化され、伝達され、行動を伝えるために使用される。
ニューロモルフィック回路は、脳内のニューロンの集団が使用するものと互換性のある方法で情報を符号化する必要がある。
論文 参考訳(メタデータ) (2022-12-08T15:16:04Z) - Interpretable Graph Neural Networks for Connectome-Based Brain Disorder
Analysis [31.281194583900998]
本稿では、障害特異的な関心領域(ROI)と顕著なつながりを分析するための解釈可能なフレームワークを提案する。
提案するフレームワークは,脳ネットワーク指向の疾患予測のためのバックボーンモデルと,グローバルに共有された説明生成装置の2つのモジュールから構成される。
論文 参考訳(メタデータ) (2022-06-30T08:02:05Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
脳ネットワーク上のグラフマイニングは、臨床表現型および神経変性疾患のための新しいバイオマーカーの発見を促進する可能性がある。
本稿では,Deep Signed Brain Networks (DSBN) と呼ばれる新しいグラフ学習フレームワークを提案する。
臨床表現型および神経変性疾患予測の枠組みを,2つの独立した公開データセットを用いて検証した。
論文 参考訳(メタデータ) (2022-05-06T03:45:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。