論文の概要: Parsing altered brain connectivity in neurodevelopmental disorders by integrating graph-based normative modeling and deep generative networks
- arxiv url: http://arxiv.org/abs/2410.11064v2
- Date: Mon, 18 Nov 2024 15:29:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:26:51.886654
- Title: Parsing altered brain connectivity in neurodevelopmental disorders by integrating graph-based normative modeling and deep generative networks
- Title(参考訳): グラフベース規範モデルと深部生成ネットワークの統合による神経発達障害におけるパーシングの脳接続性の変化
- Authors: Rui Sherry Shen, Yusuf Osmanlıoğlu, Drew Parker, Darien Aunapu, Benjamin E. Yerys, Birkan Tunç, Ragini Verma,
- Abstract要約: 神経型接続パターンからの分岐の定量化は、診断と治療の介入を知らせる有望な経路を提供する。
本稿では,生物にインスパイアされた深層生成モデルと規範的モデリングを統合したBRIDGEフレームワークによる脳表現について述べる。
BRIDGEは、接続ベースの脳年齢と時間年齢の違いに基づくグローバルなニューロディバージェンススコアと、局所的な接続性の違いを強調する地域的なニューロディバージェンスマップを提供する。
- 参考スコア(独自算出の注目度): 1.2115617129203957
- License:
- Abstract: Divergent brain connectivity is thought to underlie the behavioral and cognitive symptoms observed in many neurodevelopmental disorders. Quantifying divergence from neurotypical connectivity patterns offers a promising pathway to inform diagnosis and therapeutic interventions. While advanced neuroimaging techniques, such as diffusion MRI (dMRI), have facilitated the mapping of brain's structural connectome, the challenge lies in accurately modeling developmental trajectories within these complex networked structures to create robust neurodivergence markers. In this work, we present the Brain Representation via Individualized Deep Generative Embedding (BRIDGE) framework, which integrates normative modeling with a bio-inspired deep generative model to create a reference trajectory of connectivity transformation as part of neurotypical development. This will enable the assessment of neurodivergence by comparing individuals to the established neurotypical trajectory. BRIDGE provides a global neurodivergence score based on the difference between connectivity-based brain age and chronological age, along with region-wise neurodivergence maps that highlight localized connectivity differences. Application of BRIDGE to a large cohort of children with autism spectrum disorder demonstrates that the global neurodivergence score correlates with clinical assessments in autism, and the regional map offers insights into the heterogeneity at the individual level in neurodevelopmental disorders. Together, the neurodivergence score and map form powerful tools for quantifying developmental divergence in connectivity patterns, advancing the development of imaging markers for personalized diagnosis and intervention in various clinical contexts.
- Abstract(参考訳): 多様化した脳の接続は、多くの神経発達障害で観察される行動や認知の症状を過小評価すると考えられている。
神経型接続パターンからの分岐の定量化は、診断と治療の介入を知らせる有望な経路を提供する。
拡散MRI(DMRI)のような高度な神経イメージング技術は、脳の構造的コネクトームのマッピングを促進する一方で、これらの複雑なネットワーク構造内の発達的軌跡を正確にモデル化し、堅牢な神経分岐マーカーを作成することが課題である。
本稿では,神経型発達の一環としての接続変換の基準軌跡を作成するために,生物にインスパイアされた深層生成モデルとノルマティブモデリングを統合したBRIDGEフレームワークによる脳表現について述べる。
これにより、個人を確立された神経型軌跡と比較することにより、神経分岐の評価が可能になる。
BRIDGEは、接続ベースの脳年齢と時間年齢の違いに基づくグローバルなニューロディバージェンススコアと、局所的な接続性の違いを強調する地域的なニューロディバージェンスマップを提供する。
BRIDGEの自閉症スペクトラム障害児の大コホートへの応用は、グローバル神経分枝スコアが自閉症の臨床評価と相関していることを示し、地域地図は神経発達障害の個々のレベルにおける不均一性についての洞察を提供する。
ニューロディバージェンススコアとマップは、接続パターンの発達的ばらつきを定量化し、パーソナライズされた診断と様々な臨床状況における介入のためのイメージングマーカーの開発を進める強力なツールを形成する。
関連論文リスト
- Towards the Discovery of Down Syndrome Brain Biomarkers Using Generative Models [0.0]
我々は変分オートエンコーダと拡散モデルに基づく最先端の脳異常検出モデルの評価を行った。
以上の結果から、ダウン症候群の脳解剖を特徴付ける一次変化を効果的に検出するモデルが存在することが示唆された。
論文 参考訳(メタデータ) (2024-09-20T12:01:15Z) - CATD: Unified Representation Learning for EEG-to-fMRI Cross-Modal Generation [6.682531937245544]
本稿では,ニューロイメージングの終端から終端までのクロスモーダル合成のための条件付き時間拡散(CATD)フレームワークを提案する。
提案フレームワークは、ニューロイメージングのクロスモーダル合成のための新しいパラダイムを確立する。
パーキンソン病の予測を改善し、異常な脳領域を同定するといった医療応用の可能性を示している。
論文 参考訳(メタデータ) (2024-07-16T11:31:38Z) - Large Language Model-based FMRI Encoding of Language Functions for Subjects with Neurocognitive Disorder [53.575426835313536]
LLMを用いたfMRIエンコーディングと脳のスコアを用いた高齢者の言語関連機能変化について検討する。
脳のスコアと認知スコアの相関関係を脳全体のROIと言語関連ROIの両方で分析した。
以上の結果から,認知能力の向上は,中側頭回に有意な相関がみられた。
論文 参考訳(メタデータ) (2024-07-15T01:09:08Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
本研究では,まず動的因果モデルを用いて脳効果ネットワークを構築する。
次に、STE-ODE(Spatio-Temporal Embedding ODE)と呼ばれる解釈可能なグラフ学習フレームワークを導入する。
このフレームワークは、構造的および効果的なネットワーク間の動的相互作用を捉えることを目的とした、特異的に設計されたノード埋め込み層を含んでいる。
論文 参考訳(メタデータ) (2024-05-21T20:37:07Z) - Towards a Foundation Model for Brain Age Prediction using coVariance
Neural Networks [102.75954614946258]
時間的年齢に関する脳年齢の増加は、神経変性と認知低下に対する脆弱性の増加を反映している。
NeuroVNNは、時系列年齢を予測するために、健康な人口の回帰モデルとして事前訓練されている。
NeuroVNNは、脳の年齢に解剖学的解釈性を加え、任意の脳のアトラスに従って計算されたデータセットへの転移を可能にする「スケールフリー」特性を持つ。
論文 参考訳(メタデータ) (2024-02-12T14:46:31Z) - Exploring General Intelligence via Gated Graph Transformer in Functional
Connectivity Studies [39.82681427764513]
Gated Graph Transformer (GGT) フレームワークは,機能的接続性(FC)に基づく認知的メトリクスの予測を目的としている
フィラデルフィア神経発達コホート(PNC)に関する実証的検証は,我々のモデルにおいて優れた予測能力を示している。
論文 参考訳(メタデータ) (2024-01-18T19:28:26Z) - Dimensional Neuroimaging Endophenotypes: Neurobiological Representations
of Disease Heterogeneity Through Machine Learning [11.653182438505558]
まず、機械学習とマルチモーダルMRIを用いて、様々な神経精神・神経変性疾患における疾患の多様性を解明する研究の体系的な概要を述べる。
次に、関連する機械学習手法を要約し、DNEと呼ばれる新しいパラダイムについて議論する。
DNEは神経精神医学および神経変性疾患の神経生物学的不均一性を低次元で情報的かつ定量的な脳表現表現に識別する。
論文 参考訳(メタデータ) (2024-01-17T16:31:48Z) - Deep learning reveals the common spectrum underlying multiple brain
disorders in youth and elders from brain functional networks [53.257804915263165]
ヒトの初期および後期の脳障害は、脳機能における病理学的変化を共有する可能性がある。
病理的共通性に関する神経画像データによる重要な証拠はいまだ発見されていない。
多地点機能磁気共鳴画像データを用いたディープラーニングモデルを構築し、健康的な制御から5つの異なる脳障害を分類する。
論文 参考訳(メタデータ) (2023-02-23T09:22:05Z) - DBGDGM: Dynamic Brain Graph Deep Generative Model [63.23390833353625]
グラフは機能的磁気画像(fMRI)データから得られる脳活動の自然な表現である。
機能的接続ネットワーク(FCN)として知られる解剖学的脳領域のクラスターは、脳の機能や機能不全を理解するのに有用なバイオマーカーとなる時間的関係を符号化することが知られている。
しかし、以前の研究は脳の時間的ダイナミクスを無視し、静的グラフに焦点を当てていた。
本稿では,脳の領域を時間的に進化するコミュニティにクラスタリングし,非教師なしノードの動的埋め込みを学習する動的脳グラフ深部生成モデル(DBGDGM)を提案する。
論文 参考訳(メタデータ) (2023-01-26T20:45:30Z) - Pathology Steered Stratification Network for Subtype Identification in
Alzheimer's Disease [7.594681424335177]
アルツハイマー病(英: Alzheimers disease、AD)は、β-アミロイド、病理学的タウ、神経変性を特徴とする異種多時性神経変性疾患である。
本稿では,AD病理学に確立されたドメイン知識を反応拡散モデルにより組み込んだ新しい病理組織形成ネットワーク(PSSN)を提案する。
論文 参考訳(メタデータ) (2022-10-12T02:52:00Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
アルツハイマー病(AD)に関連する機能的脳ネットワークの微妙な変化を特徴付けることは、疾患進行の早期診断と予測に重要である。
我々は、多重グラフガウス埋め込みモデル(MG2G)と呼ばれる新しいディープラーニング手法を開発した。
我々はMG2Gを用いて、MEG脳ネットワークの内在性潜在性次元を検出し、軽度認知障害(MCI)患者のADへの進行を予測し、MCIに関連するネットワーク変化を伴う脳領域を同定した。
論文 参考訳(メタデータ) (2020-05-08T02:29:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。