論文の概要: Dealing with Inconsistency for Reasoning over Knowledge Graphs: A Survey
- arxiv url: http://arxiv.org/abs/2502.19023v1
- Date: Wed, 26 Feb 2025 10:30:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-27 14:57:41.128130
- Title: Dealing with Inconsistency for Reasoning over Knowledge Graphs: A Survey
- Title(参考訳): 知識グラフに対する推論の不整合性に関する調査
- Authors: Anastasios Nentidis, Charilaos Akasiadis, Angelos Charalambidis, Alexander Artikis,
- Abstract要約: 我々は、一貫性のない知識グラフ(KG)の推論を行う方法に焦点を当てている。
A) 矛盾の原因となるKGの部分の検出、b) 矛盾しないKGの固定による一貫性の維持、c) 矛盾に耐性のある推論。
- 参考スコア(独自算出の注目度): 44.00265764798789
- License:
- Abstract: In Knowledge Graphs (KGs), where the schema of the data is usually defined by particular ontologies, reasoning is a necessity to perform a range of tasks, such as retrieval of information, question answering, and the derivation of new knowledge. However, information to populate KGs is often extracted (semi-) automatically from natural language resources, or by integrating datasets that follow different semantic schemas, resulting in KG inconsistency. This, however, hinders the process of reasoning. In this survey, we focus on how to perform reasoning on inconsistent KGs, by analyzing the state of the art towards three complementary directions: a) the detection of the parts of the KG that cause the inconsistency, b) the fixing of an inconsistent KG to render it consistent, and c) the inconsistency-tolerant reasoning. We discuss existing work from a range of relevant fields focusing on how, and in which cases they are related to the above directions. We also highlight persisting challenges and future directions.
- Abstract(参考訳): 知識グラフ(KG)では、データのスキーマは通常特定のオントロジーによって定義されるが、推論は情報の検索、質問応答、新しい知識の導出など、様々なタスクを実行する必要がある。
しかしながら、KGを投入する情報は、自然言語リソースから自動的に(半)抽出されるか、あるいは異なるセマンティックスキーマに従うデータセットを統合することで、結果としてKGの不整合が生じる。
しかし、これは推論の妨げとなる。
本調査では,3つの相補的な方向に向けて技術の現状を分析することによって,矛盾するKGの推論を行う方法に着目した。
a) 矛盾の原因となるKGの一部の検出
b) 整合性のあるKGを固定して整合性を持たせること
c) 不整合耐性推論
本研究は, 今後, どのように, どのように, どのように, どのように, それらが, それらの方向に関連するかを, 一連の関連分野から検討する。
永続的な課題と今後の方向性も強調します。
関連論文リスト
- Ontology-grounded Automatic Knowledge Graph Construction by LLM under Wikidata schema [60.42231674887294]
本稿では,Large Language Models (LLMs) を用いた知識グラフ構築のためのオントロジー的アプローチを提案する。
我々は、一貫性と解釈可能性を確保するために、抽出された関係に基づいて、著者によるオントロジーによるKGの基底生成を行う。
我々の研究は、人間の介入を最小限に抑えたスケーラブルなKG建設パイプラインの実現に向けて有望な方向を示し、高品質で人間に解釈可能なKGを生み出す。
論文 参考訳(メタデータ) (2024-12-30T13:36:05Z) - A Prompt-Based Knowledge Graph Foundation Model for Universal In-Context Reasoning [17.676185326247946]
そこで本研究では,テキスト内学習,すなわちKG-ICLを介し,プロンプトに基づくKGファウンデーションモデルを提案する。
クエリにおけるエンティティや関係を発見できないような一般化機能を備えたプロンプトグラフを符号化するために,まず統一トークン化器を提案する。
そこで我々は,プロンプトエンコーディングとKG推論を行う2つのメッセージパッシングニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2024-10-16T06:47:18Z) - Context Graph [8.02985792541121]
本稿では,大規模言語モデル(LLM)を活用して候補エンティティや関連するコンテキストを検索する,コンテキストグラフ推論のtextbfCGR$3$パラダイムを提案する。
実験の結果、CGR$3$はKG完了(KGC)およびKG質問応答(KGQA)タスクの性能を著しく向上させることが示された。
論文 参考訳(メタデータ) (2024-06-17T02:59:19Z) - Uncertainty Management in the Construction of Knowledge Graphs: a Survey [3.5639148953570845]
知識グラフ(KG)は、データ表現の柔軟性のおかげで、企業にとって重要な資産です。
KGを構築するには、様々な異種情報源から知識を抽出する自動手法に頼るのが一般的である。
騒々しく不確実な世界では、知識は信頼できないかもしれないし、データソース間の衝突が起こるかもしれない。
論文 参考訳(メタデータ) (2024-05-27T08:22:52Z) - Towards Ontologically Grounded and Language-Agnostic Knowledge Graphs [0.0]
知識グラフ(KG)は、リコメンデーションエンジン、検索、質問応答システムなどのアプリケーションにおける事実情報の表現の標準技術となっている。
KGの継続的な更新と、異なるドメインや言語からのKGの統合は、依然として大きな課題である。
ここでの示唆は、抽象オブジェクトの再構築と、概念と型の間の存在論的区別の認識によって、KG統合の困難を緩和できる存在論的根拠と言語に依存しない表現にたどり着くことである。
論文 参考訳(メタデータ) (2023-07-20T19:48:55Z) - Reasoning over Multi-view Knowledge Graphs [59.99051368907095]
ROMAは、マルチビューKG上で論理クエリに応答する新しいフレームワークである。
大規模(数百万の事実など)のKGや粒度の細かいビューまでスケールする。
トレーニング中に観測されていない構造やKGビューのクエリを一般化する。
論文 参考訳(メタデータ) (2022-09-27T21:32:20Z) - BertNet: Harvesting Knowledge Graphs with Arbitrary Relations from
Pretrained Language Models [65.51390418485207]
本稿では,事前学習したLMから任意の関係を持つ大規模KGを抽出する手法を提案する。
関係定義の最小限の入力により、アプローチは膨大な実体対空間を効率的に探索し、多様な正確な知識を抽出する。
我々は、異なるLMから400以上の新しい関係を持つKGを収穫するためのアプローチを展開している。
論文 参考訳(メタデータ) (2022-06-28T19:46:29Z) - GreaseLM: Graph REASoning Enhanced Language Models for Question
Answering [159.9645181522436]
GreaseLMは、事前訓練されたLMとグラフニューラルネットワークの符号化された表現を、複数の層にわたるモダリティ相互作用操作で融合する新しいモデルである。
GreaseLMは、状況制約と構造化知識の両方の推論を必要とする問題に、より確実に答えることができる。
論文 参考訳(メタデータ) (2022-01-21T19:00:05Z) - QA-GNN: Reasoning with Language Models and Knowledge Graphs for Question
Answering [122.84513233992422]
学習済み言語モデル(LM)と知識グラフ(KG)の知識を用いて質問に答える問題に対処する新しいモデルであるQA-GNNを提案する。
既存のLMとLM+KGモデルに対する改善と、解釈可能で構造化された推論を行う能力を示しています。
論文 参考訳(メタデータ) (2021-04-13T17:32:51Z) - Understanding Knowledge Gaps in Visual Question Answering: Implications
for Gap Identification and Testing [20.117014315684287]
我々は、知識ギャップ(KG)の分類を用いて、質問を1つまたは複数のタイプのKGでタグ付けする。
次に,各KGに対する質問の分布のスキューについて検討する。
これらの新しい質問は、既存のVQAデータセットに追加することで、質問の多様性を高め、スキューを減らすことができる。
論文 参考訳(メタデータ) (2020-04-08T00:27:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。