A Lightweight and Extensible Cell Segmentation and Classification Model for Whole Slide Images
- URL: http://arxiv.org/abs/2502.19217v2
- Date: Wed, 09 Apr 2025 11:06:08 GMT
- Title: A Lightweight and Extensible Cell Segmentation and Classification Model for Whole Slide Images
- Authors: Nikita Shvetsov, Thomas K. Kilvaer, Masoud Tafavvoghi, Anders Sildnes, Kajsa Møllersen, Lill-Tove Rasmussen Busund, Lars Ailo Bongo,
- Abstract summary: We propose a solution that enhances data quality, model performance, and usability by creating a lightweight, cell segmentation and classification model.<n>We update data labels through cross-relabeling to refine annotations of PanNuke and MoNuSAC, producing a unified dataset with seven distinct cell types.<n>Third, to address foundation models' computational demands, we distill knowledge to reduce model size and complexity while maintaining comparable performance.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Developing clinically useful cell-level analysis tools in digital pathology remains challenging due to limitations in dataset granularity, inconsistent annotations, high computational demands, and difficulties integrating new technologies into workflows. To address these issues, we propose a solution that enhances data quality, model performance, and usability by creating a lightweight, extensible cell segmentation and classification model. First, we update data labels through cross-relabeling to refine annotations of PanNuke and MoNuSAC, producing a unified dataset with seven distinct cell types. Second, we leverage the H-Optimus foundation model as a fixed encoder to improve feature representation for simultaneous segmentation and classification tasks. Third, to address foundation models' computational demands, we distill knowledge to reduce model size and complexity while maintaining comparable performance. Finally, we integrate the distilled model into QuPath, a widely used open-source digital pathology platform. Results demonstrate improved segmentation and classification performance using the H-Optimus-based model compared to a CNN-based model. Specifically, average $R^2$ improved from 0.575 to 0.871, and average $PQ$ score improved from 0.450 to 0.492, indicating better alignment with actual cell counts and enhanced segmentation quality. The distilled model maintains comparable performance while reducing parameter count by a factor of 48. By reducing computational complexity and integrating into workflows, this approach may significantly impact diagnostics, reduce pathologist workload, and improve outcomes. Although the method shows promise, extensive validation is necessary prior to clinical deployment.
Related papers
- Efficient Brain Tumor Classification with Lightweight CNN Architecture: A Novel Approach [0.0]
Brain tumor classification using MRI images is critical in medical diagnostics, where early and accurate detection significantly impacts patient outcomes.<n>Recent advancements in deep learning (DL) have shown promise, but many models struggle with balancing accuracy and computational efficiency.<n>We propose a novel model architecture integrating separable convolutions and squeeze and excitation (SE) blocks, designed to enhance feature extraction while maintaining computational efficiency.
arXiv Detail & Related papers (2025-02-01T21:06:42Z) - Structured Model Pruning for Efficient Inference in Computational Pathology [2.9687381456164004]
We develop a methodology for pruning the widely used U-Net-style architectures in biomedical imaging.
We empirically demonstrate that pruning can compress models by at least 70% with a negligible drop in performance.
arXiv Detail & Related papers (2024-04-12T22:05:01Z) - FissionFusion: Fast Geometric Generation and Hierarchical Souping for Medical Image Analysis [0.7751705157998379]
The scarcity of well-annotated medical datasets requires leveraging transfer learning from broader datasets like ImageNet or pre-trained models like CLIP.
Model soups averages multiple fine-tuned models aiming to improve performance on In-Domain (ID) tasks and enhance robustness against Out-of-Distribution (OOD) datasets.
We propose a hierarchical merging approach that involves local and global aggregation of models at various levels.
arXiv Detail & Related papers (2024-03-20T06:48:48Z) - Re-DiffiNet: Modeling discrepancies in tumor segmentation using diffusion models [1.7995110894203483]
We introduce a framework called Re-Diffinet for modeling the discrepancy between the outputs of a segmentation model like U-Net and the ground truth.
The results show an average improvement of 0.55% in the Dice score and 16.28% in HD95 from cross-validation over 5-folds.
arXiv Detail & Related papers (2024-02-12T01:03:39Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
We propose QualEval, which augments quantitative scalar metrics with automated qualitative evaluation as a vehicle for model improvement.
QualEval uses a powerful LLM reasoner and our novel flexible linear programming solver to generate human-readable insights.
We demonstrate that leveraging its insights, for example, improves the absolute performance of the Llama 2 model by up to 15% points relative.
arXiv Detail & Related papers (2023-11-06T00:21:44Z) - The Languini Kitchen: Enabling Language Modelling Research at Different
Scales of Compute [66.84421705029624]
We introduce an experimental protocol that enables model comparisons based on equivalent compute, measured in accelerator hours.
We pre-process an existing large, diverse, and high-quality dataset of books that surpasses existing academic benchmarks in quality, diversity, and document length.
This work also provides two baseline models: a feed-forward model derived from the GPT-2 architecture and a recurrent model in the form of a novel LSTM with ten-fold throughput.
arXiv Detail & Related papers (2023-09-20T10:31:17Z) - Universal Domain Adaptation from Foundation Models: A Baseline Study [58.51162198585434]
We make empirical studies of state-of-the-art UniDA methods using foundation models.
We introduce textitCLIP distillation, a parameter-free method specifically designed to distill target knowledge from CLIP models.
Although simple, our method outperforms previous approaches in most benchmark tasks.
arXiv Detail & Related papers (2023-05-18T16:28:29Z) - Post-training Model Quantization Using GANs for Synthetic Data
Generation [57.40733249681334]
We investigate the use of synthetic data as a substitute for the calibration with real data for the quantization method.
We compare the performance of models quantized using data generated by StyleGAN2-ADA and our pre-trained DiStyleGAN, with quantization using real data and an alternative data generation method based on fractal images.
arXiv Detail & Related papers (2023-05-10T11:10:09Z) - Part-Based Models Improve Adversarial Robustness [57.699029966800644]
We show that combining human prior knowledge with end-to-end learning can improve the robustness of deep neural networks.
Our model combines a part segmentation model with a tiny classifier and is trained end-to-end to simultaneously segment objects into parts.
Our experiments indicate that these models also reduce texture bias and yield better robustness against common corruptions and spurious correlations.
arXiv Detail & Related papers (2022-09-15T15:41:47Z) - Efficient Non-Sampling Knowledge Graph Embedding [21.074002550338296]
We propose a new framework for KG embedding -- Efficient Non-Sampling Knowledge Graph Embedding (NS-KGE)
The basic idea is to consider all of the negative instances in the KG for model learning, and thus to avoid negative sampling.
Experiments on benchmark datasets show that our NS-KGE framework can achieve a better performance on efficiency and accuracy over traditional negative sampling based models.
arXiv Detail & Related papers (2021-04-21T23:36:39Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
Recent advances in computer vision take advantage of adversarial data augmentation to ameliorate the generalization ability of classification models.
Here, we present an effective and efficient alternative that advocates adversarial augmentation on intermediate feature embeddings.
We validate the proposed approach across diverse visual recognition tasks with representative backbone networks.
arXiv Detail & Related papers (2021-03-22T20:36:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.