論文の概要: CryptoPulse: Short-Term Cryptocurrency Forecasting with Dual-Prediction and Cross-Correlated Market Indicators
- arxiv url: http://arxiv.org/abs/2502.19349v2
- Date: Thu, 27 Feb 2025 17:38:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-28 11:31:21.924691
- Title: CryptoPulse: Short-Term Cryptocurrency Forecasting with Dual-Prediction and Cross-Correlated Market Indicators
- Title(参考訳): CryptoPulse:デュアルプレディションとクロスコレクティブな市場指標を備えた短期的暗号通貨予測
- Authors: Amit Kumar, Taoran Ji,
- Abstract要約: 本稿では、マクロ経済変動、技術的指標、個別の暗号通貨価格変化を取り入れて、翌日の閉値を予測する二重予測機構を提案する。
実験により,提案モデルが最先端の性能を達成し,連続して10つの比較法より優れた結果が得られた。
- 参考スコア(独自算出の注目度): 5.925689873653387
- License:
- Abstract: Cryptocurrencies fluctuate in markets with high price volatility, posing significant challenges for investors. To aid in informed decision-making, systems predicting cryptocurrency market movements have been developed, typically focusing on historical patterns. However, these methods often overlook three critical factors influencing market dynamics: 1) the macro investing environment, reflected in major cryptocurrency fluctuations affecting collaborative investor behaviors; 2) overall market sentiment, heavily influenced by news impacting investor strategies; and 3) technical indicators, offering insights into overbought or oversold conditions, momentum, and market trends, which are crucial for short-term price movements. This paper proposes a dual prediction mechanism that forecasts the next day's closing price by incorporating macroeconomic fluctuations, technical indicators, and individual cryptocurrency price changes. Additionally, a novel refinement mechanism enhances predictions through market sentiment-based rescaling and fusion. Experiments demonstrate that the proposed model achieves state-of-the-art performance, consistently outperforming ten comparison methods.
- Abstract(参考訳): 仮想通貨は価格のボラティリティが高い市場で変動し、投資家にとって大きな課題となっている。
情報的意思決定を支援するため、暗号通貨市場の動きを予測するシステムが開発され、典型的には歴史的パターンに焦点を当てている。
しかし、これらの手法は市場ダイナミクスに影響を与える3つの重要な要因を見落としていることが多い。
1) 主要な暗号通貨変動に反映されたマクロ投資環境が、共同投資家の行動に影響を及ぼす。
2【投資家戦略に影響を及ぼすニュースの影響の大きい市場感性
3)短期的な物価変動に欠かせない過剰または過大な条件、勢い、市場動向に関する洞察を提供する技術指標。
本稿では、マクロ経済変動、技術的指標、個別の暗号通貨価格変化を取り入れて、翌日の閉値を予測する二重予測機構を提案する。
さらに、新たな改善メカニズムは、市場の感情に基づく再スケーリングと融合を通じて予測を強化する。
実験により,提案モデルが最先端の性能を達成し,連続して10つの比較法より優れた結果が得られた。
関連論文リスト
- FinBERT-BiLSTM: A Deep Learning Model for Predicting Volatile Cryptocurrency Market Prices Using Market Sentiment Dynamics [3.6423651166048874]
本稿では,双方向長短期メモリ(Bidirectional Long Short-Term Memory, Bi-LSTM)ネットワークとFinBERTを併用して,暗号通貨の予測精度を向上させるハイブリッドモデルを提案する。
このアプローチは、先進的な時系列モデルと感情分析を組み合わせることで、不安定な金融市場の予測において重要なギャップを埋める。
論文 参考訳(メタデータ) (2024-11-02T14:43:06Z) - Using Sentiment and Technical Analysis to Predict Bitcoin with Machine Learning [1.3053649021965603]
本研究は,暗号通貨予測における感情指標の重要性に関する予備研究である。
我々は、Fear & Greedy Index、市場感情の指標、技術分析指標、および機械学習アルゴリズムの可能性を組み合わせることで、Bitcoin価格を予測する新しいアプローチを提案する。
論文 参考訳(メタデータ) (2024-10-18T15:13:07Z) - Predicting Bitcoin Market Trends with Enhanced Technical Indicator Integration and Classification Models [6.39158540499473]
本研究では,暗号市場の方向性を予測するための分類に基づく機械学習モデルを提案する。
歴史的データと、移動平均収束分量、相対強度指数、ボリンジャーバンドなどの重要な技術指標を用いて訓練されている。
その結果、購入/販売信号の精度は92%を超えた。
論文 参考訳(メタデータ) (2024-10-09T14:29:50Z) - Cryptocurrency Price Forecasting Using XGBoost Regressor and Technical Indicators [2.038893829552158]
本研究では,暗号通貨の価格を予測するための機械学習手法を提案する。
我々は、XGBoost回帰モデルの訓練および供給のために、EMA(Exponential moving Avergence)やMACD( moving Avergence Divergence)といった重要な技術指標を活用している。
モデルの性能を様々なシミュレーションにより評価し,有望な結果を示す。
論文 参考訳(メタデータ) (2024-07-16T14:41:27Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
伝統的な時系列計量法は、価格力学を駆動する多層相互作用の真の複雑さを捉えることができないことが多い。
最先端の2次最適化アルゴリズムを採用することで、時間的注意を払ってベイジアン双線形ニューラルネットワークを訓練する。
予測分布を用いて推定パラメータとモデル予測に関連する誤差や不確実性を解析することにより、ベイズモデルと従来のML代替品を徹底的に比較する。
論文 参考訳(メタデータ) (2022-03-07T18:59:54Z) - Deep Q-Learning Market Makers in a Multi-Agent Simulated Stock Market [58.720142291102135]
本稿では,エージェント・ベースの観点から,これらのマーケット・メーカーの戦略に関する研究に焦点をあてる。
模擬株式市場における知的市場マーカー作成のための強化学習(Reinforcement Learning, RL)の適用を提案する。
論文 参考訳(メタデータ) (2021-12-08T14:55:21Z) - Stock Price Prediction Under Anomalous Circumstances [81.37657557441649]
本稿では,異常な状況下での株価の変動パターンを捉えることを目的とする。
ARIMAとLSTMのモデルは、シングルストックレベル、業界レベル、一般市場レベルでトレーニングします。
2016年から2020年にかけての100社の株価に基づいて、平均予測精度は98%に達した。
論文 参考訳(メタデータ) (2021-09-14T18:50:38Z) - REST: Relational Event-driven Stock Trend Forecasting [76.08435590771357]
既存の手法の欠点に対処するために,rest(relational event-driven stock trend forecasting)フレームワークを提案する。
第1の欠点を是正するため,我々は,株価の文脈をモデル化し,異なる状況下での株価に対する事象情報の影響を学ぶことを提案する。
第2の欠点に対処するために,ストックグラフを構築し,関連する株からイベント情報の影響を伝達する新しい伝播層を設計する。
論文 参考訳(メタデータ) (2021-02-15T07:22:09Z) - A Sentiment Analysis Approach to the Prediction of Market Volatility [62.997667081978825]
金融ニュースとツイートから抽出された感情とFTSE100の動きの関係を調べました。
ニュース見出しから得られた感情は、市場のリターンを予測するシグナルとして使われる可能性があるが、ボラティリティには当てはまらない。
我々は,新たな情報の到着に応じて,市場の変動を予測するための正確な分類器を開発した。
論文 参考訳(メタデータ) (2020-12-10T01:15:48Z) - Ascertaining price formation in cryptocurrency markets with DeepLearning [8.413339060443878]
本論文は,近年の株式市場予測にディープラーニングを用いた成功に触発されたものである。
暗号通貨市場の特徴を高周波で分析・提示する。
私たちは、Bitcoinと米ドルのライブ為替レートの中間価格運動の予測について、一貫した78%の精度を達成しました。
論文 参考訳(メタデータ) (2020-02-09T20:23:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。