Causal Effect Estimation under Networked Interference without Networked Unconfoundedness Assumption
- URL: http://arxiv.org/abs/2502.19741v2
- Date: Sat, 02 Aug 2025 08:08:56 GMT
- Title: Causal Effect Estimation under Networked Interference without Networked Unconfoundedness Assumption
- Authors: Weilin Chen, Ruichu Cai, Jie Qiao, Yuguang Yan, José Miguel Hernández-Lobato,
- Abstract summary: Estimating causal effects under networked interference from observational data is a crucial yet challenging problem.<n>We develop a confounder recovery framework that characterizes three categories of latent confounders in networked settings.<n>Based on this framework, we design a networked effect estimator using identifiable representation learning techniques.
- Score: 41.756212748602955
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Estimating causal effects under networked interference from observational data is a crucial yet challenging problem. Most existing methods mainly rely on the networked unconfoundedness assumption, which guarantees the identification of networked effects. However, this assumption is often violated due to the latent confounders inherent in observational data, thereby hindering the identification of networked effects. To address this issue, we leverage the rich interaction patterns between units in networks, which provide valuable information for recovering these latent confounders. Building on this insight, we develop a confounder recovery framework that explicitly characterizes three categories of latent confounders in networked settings: those affecting only the unit, those affecting only the unit's neighbors, and those influencing both. Based on this framework, we design a networked effect estimator using identifiable representation learning techniques. From a theoretical standpoint, we prove the identifiability of all three types of latent confounders and, by leveraging the recovered confounders, establish a formal identification result for networked effects. Extensive experiments validate our theoretical findings and demonstrate the effectiveness of the proposed method.
Related papers
- Data Fusion for Partial Identification of Causal Effects [62.56890808004615]
We propose a novel partial identification framework that enables researchers to answer key questions.<n>Is the causal effect positive or negative? and How severe must assumption violations be to overturn this conclusion?<n>We apply our framework to the Project STAR study, which investigates the effect of classroom size on students' third-grade standardized test performance.
arXiv Detail & Related papers (2025-05-30T07:13:01Z) - Disentangled Graph Autoencoder for Treatment Effect Estimation [1.361700725822891]
We propose a novel disentangled variational graph autoencoder for treatment effect estimation on networked observational data.<n>Our graph encoder disentangles latent factors into instrumental, confounding, adjustment, and noisy factors, while enforcing factor independence using the Hilbert-Schmidt Independence Criterion.
arXiv Detail & Related papers (2024-12-19T03:44:49Z) - Network Causal Effect Estimation In Graphical Models Of Contagion And Latent Confounding [2.654975444537834]
Key question in many network studies is whether the observed correlations between units are primarily due to contagion or latent confounding.
We propose network causal effect estimation strategies that provide unbiased and consistent estimates.
We evaluate the effectiveness of our methods with synthetic data and the validity of our assumptions using real-world networks.
arXiv Detail & Related papers (2024-11-02T22:12:44Z) - Estimating Peer Direct and Indirect Effects in Observational Network Data [16.006409149421515]
We propose a general setting which considers both peer direct effects and peer indirect effects, and the effect of an individual's own treatment.
We use attention mechanisms to distinguish the influences of different neighbors and explore high-order neighbor effects through graph neural networks.
Our theoretical findings have the potential to improve intervention strategies in networked systems, with applications in areas such as social networks and epidemiology.
arXiv Detail & Related papers (2024-08-21T10:02:05Z) - Graph Machine Learning based Doubly Robust Estimator for Network Causal Effects [17.44202934049009]
We propose a novel methodology that combines graph machine learning approaches with the double machine learning framework.
We demonstrate our method is accurate, robust, and scalable via an extensive simulation study.
arXiv Detail & Related papers (2024-03-17T20:23:42Z) - Treatment-Aware Hyperbolic Representation Learning for Causal Effect
Estimation with Social Networks [17.25831411912408]
Estimating the individual treatment effect (ITE) from observational data is a crucial research topic.
How to identify hidden confounders poses a key challenge in ITE estimation.
Recent studies have incorporated the structural information of social networks to tackle this challenge.
arXiv Detail & Related papers (2024-01-12T13:02:39Z) - Understanding Robust Overfitting from the Feature Generalization Perspective [61.770805867606796]
Adversarial training (AT) constructs robust neural networks by incorporating adversarial perturbations into natural data.
It is plagued by the issue of robust overfitting (RO), which severely damages the model's robustness.
In this paper, we investigate RO from a novel feature generalization perspective.
arXiv Detail & Related papers (2023-10-01T07:57:03Z) - Investigating Human-Identifiable Features Hidden in Adversarial
Perturbations [54.39726653562144]
Our study explores up to five attack algorithms across three datasets.
We identify human-identifiable features in adversarial perturbations.
Using pixel-level annotations, we extract such features and demonstrate their ability to compromise target models.
arXiv Detail & Related papers (2023-09-28T22:31:29Z) - Neighborhood Adaptive Estimators for Causal Inference under Network Interference [109.17155002599978]
We consider the violation of the classical no-interference assumption with units connected by a network.
For tractability, we consider a known network that describes how interference may spread.
arXiv Detail & Related papers (2022-12-07T14:53:47Z) - Exploring the Trade-off between Plausibility, Change Intensity and
Adversarial Power in Counterfactual Explanations using Multi-objective
Optimization [73.89239820192894]
We argue that automated counterfactual generation should regard several aspects of the produced adversarial instances.
We present a novel framework for the generation of counterfactual examples.
arXiv Detail & Related papers (2022-05-20T15:02:53Z) - Towards Unbiased Visual Emotion Recognition via Causal Intervention [63.74095927462]
We propose a novel Emotion Recognition Network (IERN) to alleviate the negative effects brought by the dataset bias.
A series of designed tests validate the effectiveness of IERN, and experiments on three emotion benchmarks demonstrate that IERN outperforms other state-of-the-art approaches.
arXiv Detail & Related papers (2021-07-26T10:40:59Z) - Residual Error: a New Performance Measure for Adversarial Robustness [85.0371352689919]
A major challenge that limits the wide-spread adoption of deep learning has been their fragility to adversarial attacks.
This study presents the concept of residual error, a new performance measure for assessing the adversarial robustness of a deep neural network.
Experimental results using the case of image classification demonstrate the effectiveness and efficacy of the proposed residual error metric.
arXiv Detail & Related papers (2021-06-18T16:34:23Z) - Unveiling Anomalous Edges and Nominal Connectivity of Attributed
Networks [53.56901624204265]
The present work deals with uncovering anomalous edges in attributed graphs using two distinct formulations with complementary strengths.
The first relies on decomposing the graph data matrix into low rank plus sparse components to improve markedly performance.
The second broadens the scope of the first by performing robust recovery of the unperturbed graph, which enhances the anomaly identification performance.
arXiv Detail & Related papers (2021-04-17T20:00:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.