論文の概要: Can LLM Assist in the Evaluation of the Quality of Machine Learning Explanations?
- arxiv url: http://arxiv.org/abs/2502.20635v1
- Date: Fri, 28 Feb 2025 01:36:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-03 13:40:31.181395
- Title: Can LLM Assist in the Evaluation of the Quality of Machine Learning Explanations?
- Title(参考訳): LLMは機械学習説明の質評価に有効か?
- Authors: Bo Wang, Yiqiao Li, Jianlong Zhou, Fang Chen,
- Abstract要約: そこで本研究では,LLMに基づく判断と人間による判断を統合して説明を行うワークフローを提案する。
LLMに基づく審査員は、様々な説明手法の質を評価し、その評価能力と人間の判断能力を比較する。
LLMに基づく審査員は、主観的指標を用いて説明の質を効果的に評価するが、人間の判断に取って代わるだけの十分な開発は行われていないと結論づける。
- 参考スコア(独自算出の注目度): 8.806046602683333
- License:
- Abstract: EXplainable machine learning (XML) has recently emerged to address the mystery mechanisms of machine learning (ML) systems by interpreting their 'black box' results. Despite the development of various explanation methods, determining the most suitable XML method for specific ML contexts remains unclear, highlighting the need for effective evaluation of explanations. The evaluating capabilities of the Transformer-based large language model (LLM) present an opportunity to adopt LLM-as-a-Judge for assessing explanations. In this paper, we propose a workflow that integrates both LLM-based and human judges for evaluating explanations. We examine how LLM-based judges evaluate the quality of various explanation methods and compare their evaluation capabilities to those of human judges within an iris classification scenario, employing both subjective and objective metrics. We conclude that while LLM-based judges effectively assess the quality of explanations using subjective metrics, they are not yet sufficiently developed to replace human judges in this role.
- Abstract(参考訳): 説明可能な機械学習(XML)は、最近、機械学習(ML)システムのミステリーメカニズムに「ブラックボックス」の結果を解釈して対処するために現れた。
様々な説明手法が開発されているにもかかわらず、特定のMLコンテキストに対して最も適したXMLメソッドを決定することは、説明の効果的な評価の必要性を浮き彫りにしたままである。
Transformer-based large language model (LLM) の評価能力は、説明を評価するために LLM-as-a-Judge を採用する機会を与える。
本稿では,LLMに基づく判断と人間による判断を統合し,説明の質を評価するワークフローを提案する。
本研究では, LLMに基づく審査員が様々な説明手法の質を評価し, その評価能力を, 主観的・客観的な指標を用いて, 虹彩分類シナリオにおける人間の判断能力と比較する。
LLMに基づく審査員は、主観的指標を用いて説明の質を効果的に評価するが、この役割における人間の判断を置き換えるには不十分である。
関連論文リスト
- Re-evaluating Automatic LLM System Ranking for Alignment with Human Preference [63.03859517284341]
自動評価フレームワークは、人間の嗜好との整合性に基づいてLLMをランク付けすることを目的としている。
自動LLMベンチラは、入力セット、評価モデル、評価タイプ、集約方法の4つのコンポーネントから構成される。
論文 参考訳(メタデータ) (2024-12-31T17:46:51Z) - Systematic Evaluation of LLM-as-a-Judge in LLM Alignment Tasks: Explainable Metrics and Diverse Prompt Templates [10.091146498861333]
GPT-4のような商用の大規模言語モデル(LLM)は、近年、異なるアライメントアプローチの評価と比較に使われている。
LLM審査員の信頼性とアライメントを評価・比較・可視化する枠組みを開発した。
論文 参考訳(メタデータ) (2024-08-23T11:49:01Z) - Evaluating the Evaluator: Measuring LLMs' Adherence to Task Evaluation Instructions [18.93335792080899]
LLMs-as-a-judgeがAI判断と人間の判断の整合性に与える影響について検討する。
我々は、LLMによる最先端評価で一般的に使用される品質基準の分類を集約し、それを審査員として厳密なモデルベンチマークとして提供する。
論文 参考訳(メタデータ) (2024-08-16T14:49:35Z) - CIBench: Evaluating Your LLMs with a Code Interpreter Plugin [68.95137938214862]
データサイエンスタスクにコードインタプリタを利用するLLMの能力を総合的に評価する,CIBenchという対話型評価フレームワークを提案する。
評価データセットは,LLM-人的協調手法を用いて構築され,連続的かつ対話的なIPythonセッションを活用することによって,実際のワークフローをシミュレートする。
コードインタプリタの利用において, CIBench 上で 24 個の LLM の能力を解析し, 将来の LLM に対する貴重な洞察を提供するため, 広範囲にわたる実験を行った。
論文 参考訳(メタデータ) (2024-07-15T07:43:55Z) - Large Language Models as Evaluators for Recommendation Explanations [23.938202791437337]
我々は,LLMがレコメンデーション・リコメンデーション・リコメンデーションの評価に役立てられるかどうかを検討する。
我々は,評価者ラベルとユーザが提供する真実との相関を計測するために,3段階のメタ評価戦略を設計し,適用する。
本研究は,LLMを評価対象として活用することは,レコメンデーション説明文の評価において,正確かつ再現可能で費用対効果の高いソリューションであることを示す。
論文 参考訳(メタデータ) (2024-06-05T13:23:23Z) - DnA-Eval: Enhancing Large Language Model Evaluation through Decomposition and Aggregation [75.81096662788254]
大規模言語モデル(LLM)はスケーラブルで経済的な評価指標である。
これらの評価者がどの程度信頼できるかという問題は、重要な研究課題として浮上している。
本稿では,デコンプリートとアグリゲートを提案し,その評価プロセスを教育実践に基づいて異なる段階に分解する。
論文 参考訳(メタデータ) (2024-05-24T08:12:30Z) - MLLM-Bench: Evaluating Multimodal LLMs with Per-sample Criteria [49.500322937449326]
MLLM(Multimodal large language model)は、AIアプリケーションの範囲を広げている。
既存のMLLMの自動評価手法は主にユーザエクスペリエンスを考慮せずにクエリを評価する場合に限られている。
本稿では,MLLM を判断基準として評価する MLLM の新しい評価パラダイムを提案する。
論文 参考訳(メタデータ) (2023-11-23T12:04:25Z) - Evaluating Large Language Models at Evaluating Instruction Following [54.49567482594617]
我々は,命令追従出力の識別におけるLLM評価器の能力をテストするために,挑戦的なメタ評価ベンチマーク LLMBar を導入する。
異なる評価器がLLMBarに対して異なる性能を示し、最高の評価器でさえ改善の余地があることが判明した。
論文 参考訳(メタデータ) (2023-10-11T16:38:11Z) - Can Large Language Models Be an Alternative to Human Evaluations? [80.81532239566992]
大規模言語モデル(LLM)は、タスク命令のみを提供する場合、目に見えないタスクに対して例外的な性能を示す。
LLM評価の結果は、専門家による評価の結果と一致していることを示す。
論文 参考訳(メタデータ) (2023-05-03T07:28:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。